Electromagnetic pulses: propagation & properties?

Propagation equation, group velocity, group velocity dispersion

An electric field wave packet propagating in a laser beam along the z axis can be described as
1 i(knz—
E(r,t)= 2 a(z,t) F(x,y,z) e'koz=@t) L cc. (VIl-18)

where a(z,t) is the slowly-varying temporal envelope, F(x,y,z) is the transverse amplitude distribution of the light wavepacket
(henceforth briefly: pulse), vo = wo/2m is the carrier frequency and ko = won(wo)/c determines the carrier wavelength (as Ao =
2m/ko) of the wavepacket. In the absence of an excessively broad bandwidth and strong nonlinearities, F(x,y,z) can be well
approximated with the distribution valid for a monochromatic laser beam at wo and can be separated out from the equation
for a(z,t). Under these circumstances, a(z,t) obeys the following pulse propagation equation (Eq. IV-127 in Chapter IV-4):

2 2 2 NL
0 . 0 0 0 2 O0°P™(z,t) —ikoz—
S+ 2Ky | k= |~ (K +koko) 5 |a(z,t) = 2( ) g-ilkgz-oq!)
0z 0z ot ot €oC ot
(VIII-19)
where the parameters K,K4,K, are defined by the Taylor expansion of the wave vector
on(w 1 1 1
() =M ko +Kq (00— )+~ Ky (@ — 0)° + —kg (@ — 0)° + =Ky (@—p)* +..
C 2 6 24
(VII1-20)
and the effects of the higher-order terms proportional to K Ky ,... was neglected in (VIII-19)
Slowly-varying amplitude approximation
With the slowly-varying amplitude approximation in space & in time, respectively?
1 0 1 0
——al<<[q : ——a|<<|a| (VIll-21a,b)

K, Oz @, 0T

' The majority of figures and several derivations have been adapted from the Ultrafast Optics lecture course of Prof. Rick Trebino at the
Georgia Institute of Technology, Atlanta.

2 Note that the nature of these approximations is very different: whilst Eq. (VIIl-21a) holds if the variation of the electric field amplitude and
hence the pulse shape is small upon travelling a distance equal to the carrier wavelength, Eq. (VIII-21b) expresses that the pulse is long
enough so that its electric field amplitude varies — at any position — within the carrier oscillation period. Whereas the first approximation is
to be fulfilled by the propagation medium, the second one is to be met by the pulse itself.
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and transformation to the “retarded” frame of reference

YA
T=t-kz=t—-— (VIIl-22)
Vg

moving with a speed Vv =1/K; we obtain®

: 2 :
Ea(’C,Z) __ |k2 0 : a4+ |(0080nn2
0z 2 Ot 2

\a\z a (Vill-23)

where we neglected terms of third order and higher in (V1I1-20) and assumed that the dominant nonlinearity is the optical Kerr
effect, i.e. and intensity dependent refractive index

An(t) =n, 1 (t) (VIll-24)

Equation VIII-23 describes optical pulse propagation in a dispersive & nonlinear medium, and due to the formal analogy, has
been dubbed the nonlinear Schrddinger equation. It is of key importance for optical fibre communication and, as we shall
see, for describing femtosecond pulse formation in mode-locked solid state lasers.

In (VIII-23) k2 = 0 and nz = 0 implies 0a(t,z)/ 0z = 0, that is the pulse propagates undistorted with its peak “locked” to
T =0 all the time. That is, the pulse propagates at a speed of vq

ki = M = i (VIII-25)

do o0 Vg

which is therefore referred to as group velocity and consequently

2
k2 = &(203) = di i (VIII-26)
d(D o ) Vg -

is the variation of this quantity with frequency, the group velocity dispersion. Currently neglected, higher-order terms in the
expansion of the wave vector introduce higher-order derivatives with respect to t in the pulse propagation equation and must
not be ignored if either k2 is small or the spectral width of the wavepacket is large.

3 For derivation see Chapter V-4.
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Note that the group velocity

izﬁ — n(COO) 4 o dn| (VIII-27)
Vg dow o0 C C doo‘mo

is equal to the phase velocity

i_k :k_ozn((Do)

—_ (VII1-28)

dn
if and only if — =0.

dolg,
Frequency-domain description of electromagnetic pulses
The electric field of an electromagnetic wavepacket can be expressed in terms of its Fourier components as

—imt |
E(z,t) :z—j E(zw)e " do. wee E(zo)=[ E(zt)edt
T o 0

E(z,m) describes the wavepacket as uniquely as E(z,t) does. E(z,) is related to the Fourier-transform of the complex
field amplitude

00

a(z,m) = j a(z,t) ' gt (VIll-29)

—00

as

ikoz —ikyz

E(z,0)=E, (z,0)+E_(z,0) =%a(z,co—c00)e - % a’(z,0+w,)e (VII-30)

This equation reveals that the negative and positive-frequency portion of E(z,) contains redundant information. Therefore
for reconstruction of the pulse, E(Z,t) , the positive-frequency portion of E(z,®), E., (z,), centred at ey is sufficient

just as the Fourier transform of the complex field amplitude &(z, ®) , which centres at = 0 as shown in Fig. VIII-12 for
z=0.
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Fig. VIII-12 The full and dashed black lines show |a(c0)| and its phase, respectively, whereas the grey lines depict the

modulus and phase of E(w).

The frequency-domain description is particularly helpful if the wavepacket propagates through a linear medium (Px. =0 in
Eq. VIII-19). Under these circumstances, each frequency component E(z,®) of the wavepacket E(z,t) evolves during

propagation just as the amplitude of a plane wave of the same frequency: E(Z,w) = E(0,0)) e 5o that the complex
spectral amplitudes at z = 0 and z = L are connected as

E(L,®) =E(0,0) e'?*) (VIIl-32)

where the phase shift () = K(w)L accumulating over a distance L can be expanded just as k() :

o) =K(@)L =¢p + ((D—OJO)JF%(Pz (- g +

(VIII-33)
+1(p (0—wp)* +i(p (0—wg)* +
6 3 0 24 4 0
Clearly, the expansion coefficients @y, P, P,,Ps....are related to those in (VIII-20): Ko, Ky,Ky K3, ...
¢o =k(mp)L =kqL (VII-34)

is the “absolute” phase shift, which is added to all frequency components of the wavepacket. It is equal to the shift suffered
by a monochromatic wave at the carrier frequency @y .

Similarly
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d L
Q1= d—(P =kiL=— :Tg , (VIII-35)
® g Vg
which is the time it takes the pulse to travel a distance L, termed the group delay and
dp ‘ dT
do ‘ do
Q) Q)

measures the variation of this delay with » and is called the group-delay dispersion.

The frequency-domain description of light pulse propagation through linear media is now as simple as follows: the frequency
spectrum of the output pulse is obtained from that of the input pulse by (VIII-32) and inverse Fourier transform yields the
output waveform (Fig. VIII-13). The procedure is equivalent to solving the differential equation (VIII-19) for P, = 0, but is
much more straightforward.

Q) | E (LW

Lol E(

<
I’I_-
WY

Fig. VIII-13

Physical implication of the spectral phase shift ¢(w)

It is the phase shift, the individual spectral components of a wavepacket suffer upon propagation. Let us see how the linear
term in the expansion (VIII-27) affects the pulse. Fig. VIlI-14a shows the situation at z = 0 under the assumption that all the
component waves have a zero phase at the pulse centre.

If after some propagation a phase shift () = (o— ooo) linearly varying with frequency accumulates, the instant at

which all the waves are in phase and hence create the pulse is delayed in time (Fig. VIII-14b). The phase shift linear in
frequency indeed introduces a time delay (group delay) as concluded before!
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Fig. VIII-14b

Time-domain description of electromagnetic pulses: decomposition into carrier and envelope

Decomposition of a light wavepacket into carrier and envelope is mainly motivated by the vastly simplified description of its
propagation in terms of its complex amplitude a(z,t) . The respective pulse propagation equations applying for different

nonlinear and dispersive media and allowing diffraction in the paraxial approximation (3D propagation) can be found in T.
Brabec, F. Krausz: Reviews of Modern Physics 72, pp. 545-591 (2000).

How can we define the complex amplitude a(t) from the waveform E(t) 2

The recipe is as simple as follows:
1. calculate or measure the Fourier-spectrum at positive frequencies E +(c0) ;

2. from this determine &() by shifting E., () with @ (see Fig. VIII-12), i.e. a(®) =E, (0 + ®,)
3. calculate a(t) from a(w) by inverse Fourier transform
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How to define g ?

In order to avoid fast oscillations ina(t) , the reference frequency @, must be close to the centre of E_, (®) . The precise

choice is not critical for describing pulse propagation on the basis of a(t) . There are several possible definitions of ,, one
of which

jgooo‘E((o)‘zdoo
Iy E() do

Wy =0= (VIII-37)

stands out due to minimising the intensity-weighted phase variation of a(t) . As a result of this choice, the phase ¢(t) of

a(t) = |a(t)|ei¢(t) is a slowly-varying function, i.e. exhibits little variation over the oscillation cycle Ty =27t/ @ . In these
lecture notes we shall use this definition unless otherwise stated.

Is the carrier-envelope decomposition meaningful for pulse durations approaching T0 =2n/ ®,?

To legitimise the concept of carrier and envelope we must require that  and a(t) remain invariant under a change of

(g in

E(t) = % a(t)e—im0t+i¢0 +C.C. (VIII-38)

—iogt+i[dg+A
A shift of ¢y by some A¢ yields the new wave form E '(t) = (1 / 2)a(t) e 0 [90-+A0] =+ C.C. In order that
the definition of @, and a(t) be self-consistent, the above procedure must yield @y, = @y . Note that this requirement is

independent of the specific definition of @, . It has been found* that this requirement is fulfilled for pulse durations (full width

2
at half maximum, FWHM, of the intensity profile |a(t)| ) approaching the wave cycle Ty = 271t/ @, .

Lowest-order propagation effect in the time domain: shift of the carrier with respect to the envelope

When describing pulse propagation in the time domain, which is the method of choice in the presence of nonlinear effects,
i.e. Pn= 0in (VII-19), it is expedient to use the retarded frame of reference defined by (VIII-22), in which the pulse centres
at © =0 at any time during propagation.

In this frame we can write

—iogTHid'(2)

E(z,7) = % a(z,t)e +C.C. (VIIl-39)

with

4 T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997); T. Brabec and F. Krausz, Rev. Mod. Phys.72, 545-591 (1997).
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O'(2) = o i—i VA (VIII-40)

Vph Vg

which can be obtained by a simple substitution of the coordinate transformation (VIII-22) into (VIII-18) by assuming F(x,y,z)
=1. The complex amplitude a(z,7)is related to the cycle-averaged intensity (see. IV-34) as

I1(z,7)= %aocn\a(z,«:)\z (VIII-41)

and can be decomposed into a real amplitude |a(Z,1:)| and a phase

a(z,t) = ‘a(z,r)‘e'{¢°°+¢(z’r)} (Vill42)
Substituting this expression into (VIII-39) yields

—iogT+d'(2)

E(z,r)zga(z,r)e +CC.=

VIII-43)

= Nagz,p)eenm+ité @) romiotzal | ¢ ¢

The phase @y is - by definition - the phase of the electric field at z=0 and at t=0. Its physical meaning is the positioning of

the central oscillation cycle in the carrier wave with respect to the pulse peak. The phase term ¢'(z) shifts the carrier wave

as a whole with respect to the pulse peak in proportion to the propagation distance z. This shift is a consequence of a
difference between their propagation velocities (phase and group velocity) in (VIII-40) as shown in Fig. VIII-15.

We can combine ¢, and ¢'(z) into a single phase term

, 1 1 dn
Po(z) =g +9'(2) = dpo + g| ——— |Z=g + 27| — | Z (Vil-44)
Voh Vg dA /s,

defining the timing of the central cycle with respect to the envelope at any position during propagation.
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E(0,7) "’%(Z) E(z,7)

Fig. VIIIl-15

The last expression in (VIII-44) has been derived from the definition of Vpn and V, by substituting @ = 2nc/ Ninto the

relevant expressions (exercise). This expression implies that the carrier is offset with respect to the pulse envelope by a
phase shift 7t over a propagation distance of

1ldn[™

=—|— (VIlI-45)

This characteristic propagation length has been termed dephasing length.5 In the visible and near infrared spectral range it is
as short as 10-50 micrometers for transparent materials. The absolute phase typically becomes relevant only if the pulse
contains less than three oscillation cycles (Fig. VIII-16).

Different absolLte phases for a Different absaolute phases for a
four-cycle pulse

Fied {a.n.)

Amplitude, Intensity {a.u.)

Tirre ifz) - - - Tirma {15}

Fig. VIII-16

5 L. Xu, Ch. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hansch, Opt. Lett. 21, 2008 (1996).
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Time-dependent phase: instantaneous frequency, chirped pulse

The time-dependent phase (I)(Z,t) introduces a variation of the instantaneous carrier frequency across the pulse. To see

this, consider at some time, T, the total temporal phase of the wave, (I)T

(I)r =T — (1)(2,’5)

which contains a rapidly varying term proportional to the carrier frequency and a slowly-varying term  ¢(t) . Exactly one
period, T, later, the total phase will — by definition — increase to

(I)’E-I—T = (I)r +2n= (DO[T+T]_¢(Z’T+T)

where (T +T)is the slowly-varying temporal phase at instant 7+T. Subtracting these two equations

(I)’L'+T o (I)r =2n= (DOT - [(1)('E +T ) - ¢(T)]

and dividing the new one by T:
21 O(t+T)—d(7)
T T

We recognise the left-hand side to be equal to the instantaneous carrier frequency of the wavepacket at the time, t . Further,
the second term on the right-hand side can be replaced with d¢/dt because of the slowly-varying nature of ¢(t),

following from the definition of @, Eq. (VIII-38) . The instantaneous carrier frequency then becomes

oh(z,7)

Oingt (Z,T) = g —7 (VIII-46)

A linear variation of (2, ) with T merely shifts introduces a constant shift of . If the carrier frequency is defined by (VIII-

37), this term generally vanishes. It may, however, emerge, during propagation if, for instance, some nonlinearity causes an
asymmetric broadening of the spectrum. The next higher-order term in the Taylor expansion of the temporally-varying phase
causes a linear variation of the instantaneous frequency.

Gaussian pulse modelling of propagation through a linear medium

Well-behaved pulses with a bell-shaped intensity profile can be modelled - in first approximation — as a Gaussian pulse. A
Gaussian pulse with a complex Gaussian coefficienty = o + If3 can model a pulse with a linear chirp

ot i (mor+Brz)

1 2 1 _
E(t)=—ae " e '™ +cc.=—a,e * e

+C.C. (VIII-47)
2

Clearly, o determines the pulse duration tp. If we define it as the full width at half maximum, FWHM of the intensity

2
profile |E(r)| the relationship between tpand o reads as
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Tp = (VII-48)
On the other hand, 3 results in an instantaneous frequency
Ot (T) = 0 + 2B (VIII-49)

that increases linearly in time. In analogy to bird sounds, such a pulse is called a “chirped” pulse, in this case a linearly-
chirped pulse. Fig. VIII-17 shows the electric field of Gaussian pulses for 3 > 0, positive chirp (a), and for 3 < 0, negative

chirp, (b).

Light electric field

Time

Fig. VIlI-17a Positively-chirped Gaussian pulse.

Light electric field

time

Fig. VIII-17b Negatively-chirped Gaussian pulse.

The frequency spectrum of a Gaussian pulse can be written as (see Chapter [V-4)

2
(@—ay)
4(a+ip)

(VIII-50)
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The spectrum of a Gaussian pulse is Gaussian too! The frequency bandwidth can now be defined — analogously to t, — as
2
the full width of half maximum of |E (e)|

A [ 2
Avp = p = (2(n2)o 1+ E (VIII-51)
2T T \/ o

Resulting in the time-bandwidth product

2
AV, T, =@\/1+(B/a)2 =o.44‘/1+ g > (.44 (ViI52)

T

which is minimum when 3 = 0 . In this case the pulse is referred to as bandwidth-limited or Fourier-limited because its
duration is minimum for the given bandwidth and pulse shape.

Lowest-order pulse shaping effects preserve the shape of a Gaussian pulse

The power of modelling pulse propagation with a Gaussian pulse relates to the fact that the most important pulse shaping
effects such as (lowest-order) amplitude modulation, phase modulation, spectral filtering and dispersion can — in first-order
approximation — be modelled to preserve the Gaussian nature of the pulse!

In fact, multiplying the Gaussian pulse with

Tan(t)= exp(—KAM 12) = a'=a+Kpyy = amplitude modulation (VIII-53)
Kav> 0 : pulse shortening
Kam < 0 : pulse broadening

Top (T) = exp(—iKPM 12) = B'=PB+Kpy = phase modulation (VIII-54)

Kem> 0 : positive chirp (for $=0)
Kpum < 0 : negative chirp (for p=0)

in the time domain, or with

1 1
Tsr (o) = exp[—KSF (o— (,00)2} = WA +Kgg = spectral filtering (V1II-55)
Y Y
Kse> 0 : spectral narrowing
Ksk< 0 : spectral broadening
; 2 1 T . (VIII-56)
Tepp (@) = eXp[IKGDD (0—0p) J = -=——1Kgpp = group-delay
4y' 4y dispersion

performs these manipulations and preserves the pulse as a linearly-chirped Gaussian! As a consequence, basic spectral
and temporal manipulations of light pulses can be modelled - in first approximation - in terms of a change in the
Gaussian pulse parameter y analytically!
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Phase shift first-order in frequency: a shift in time
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First-order phase in time: a frequency shift
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Phase shift second-order in frequency: positive or negative linear chirp
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Beyond imposing a linear chirp, the quadratic spectral phase shift has stretched a pulse with originally 3-fs duration to a ~14-

fs pulse.

Phase shift third-order in frequency: satellite pulses
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Fig. VIII-22 Trailing satellite pulses are indicative of positive spectral cubic phase.
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Phase shift fourth-order in frequency: leading and trailing pulse wings
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Fig. VIII-24 Positive quadratic spectral phase implies higher frequencies in the trailing wing.

— _4x10° rad fs

Field (a.u.)

-40 0 40
Time (fs)
- = - 0
1 - — Intensity|
100 AT S T et tgmup --5
2 ] — — Phase |L.10
> 0- ! . 5
L ! e, A L-15
8 I \
-100{ , e H-20
L | F-25
0.30 0.35 0.40 0.45 0.50

Frequency (1/fs)

(peJ) aseyd

Frequency (1/fs)

Delay (fs)

Fig. VIII-25 Negative quadratic spectral phase implies higher frequencies in the leading wing.

0.50 = =~ —+ 0
L — Intensity
0.454 P ) Vinet F-10 R
! |= = Phase w
0.40-, 7 20 @
0.354 i g +-30 E&
0.3 |"40
-40 0 40
Time (fs)
b — Intensity 25
100_ ].-.“l resee— tgloup _20 }
1 K — — Phase o
\ 15 @
04 i, / o
i 10 3
\ £, a
-100+ . 5 ~
T T ——= T ¥ 0
600 700 800 900 1000 1100
Wavelength (nm)
0.50+
— Intensity|L 40
0.454..... * Vinst o
.............. — 30 -
0_40_\ Phase 1 ?3
~ T -
~ i e 10 ~
0.304 = -7
T =—r= T 0
-40 0 40
Time (fs)
— — ()
. 4 — Intensity
100- ; e tgmup --5 .
1 — — Phase |l.10 B
0- £ ke 4 0 %
I i \ --15 3
[
400{ 7 ‘O p0 s
£ L +-25
600 700 800 900 1000 1100
Wavelength (nm)
-251-



VIII. Ultrafast optics electromagnetic pulses: propagation & properties

Pulse characteristics: duration, time-bandwidth product

There are many possible definitions of the duration (or “width” or “length”) of a wavepacket.

Effective width: the width of a rectangle whose height and area are the same as those of the pulse (Fig. VIII-26).
a(0)/? _
B 2
a(0)

of ‘a(r)‘z dt (VIII-57)

Fi

0 T

Rms (root-mean-squared) width: second-order moment of the intensity profile (Fig. VIII-27).

E 112
[ ‘a(r)‘ dt
g = _°°OO ) (VIII-58)
[ [a(z)["dz
- _w -
Fig. VIII-27
FWHM (full width at half maximum): distance between the half-maximum points (Fig. VIII-28).
A
TFWHM
--------- — i sz mmEEnn

Fig. VIII-28
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VIII. Ultrafast optics electromagnetic pulses: propagation & properties

The FWHM is the most frequently used measure for the duration of ultrashort light pulses. However, it may be used only for
well-behaved pulses with a bell-shaped profile and small wings or satellites because the latter are ignored up to a height of
49.99%!

Time-bandwidth product

According to the Fourier theorem the product of a function’s extension in the time domain, A<, and the frequency domain,
A, has a minimum.

Let us define the widths of the intensity profile f(t)and its Fourier-transform, F () , using the definition (VIII-57) and
assuming f(t)and F(w) peak at 0:

1 % (I
Ar=@_uf(r)‘dr : Am=%_{o‘F(m)‘d®

Then

f(0) f(0) 2, £(0)
and
Ao> [ F(m)dco:i [ F(o)e e 2t (0)
F(0) % F(0) F(0)
Combining the two latter results
A®AT > 27:@@ = A®OAT>21 : AvAt>1 (VIII-59)
F(0) £(0)

Different definitions of the widths yield different constants, which — for most definitions (incl. FWHM) also depend on the
pulse shape.
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VIII. Ultrafast optics electromagnetic pulses: propagation & properties

Temporal and spectral shapes of simple electromagnetic pulses®

Common pulse envelopes (with 7, = Intensity FWHM):

Gaussian pulse E(t) o exp[—1.385(t/7p)?%
_______ sech - pulse E(t) o sech[1.763(t/7p)]
--------- Lorentzian pulse E(t) o [1+1.656(t/7p)% "

o<

—  asymm. sech pulse E(t) [exp(t/7p) + exp(—3t/7p)] "}

1 Spectrum ‘2 Intensity
Spectra for
pulses with
the same
pulse width
Field Intensity Tp Spectral Aw, TBP
envelope profile (FWHM) profile (FWHM)
Gauss e—2(t/7c)? 1.17771¢ e—(076)?/2 2.355/7¢ | 0.441
sech sech?(t/,) 1.7637, |sech®(rw7,/2)| 1.122/7, |0.315

Lorentz (14 (t/7)?]2 1.2877,, e~2lolre 10,693/, |0.142

gg}l}ﬂm et/ +e-3t/r°] -2 1.0437, | sech(mwty/2) | 1.677/7, |0.278

rectang. |1 for |t/7.| <%, O else Tr sinc?(wry) | 2.78/7 |0.443

6 J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, San Diego, USA, 1996).
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VIII. Ultrafast optics

electromagnetic pulses: propagation & properties

Transformation between wavelength and frequency

The spectrum and spectral phase is often measured versus wavelength SX (

E‘E(o)

() =[Eq (o)

frequency, S
By using ® = 2TTC [ A

The phase can be easily transformed

05, (A) = @y (2nC/2)

M=l 0

(VIII-60a)

‘ Oy (7\,) , rather than

2
)‘ , ([)0)((1)) = ([)(CO) , therefore a transformation rule is required.

For transforming the spectrum, we note that S, (A.)and S () are the energy density within a unit wavelength and
frequency interval, hence the total energy in the pulse is given by

W, = [ S, (Mdh= | Sy(@)do

Changing variables and using d (D/d A= —21IC /7\,2

[ Sy(@do= [ S,(2nc/a) imdk js 2nc/k)2}%cdk

From which we obtain

27C
(VIII-60b)

S, (1) =S, (2nc/n) %

7»2

Eq. (VIII-60) implies different spectral shapes of broadband signals vs. frequency and wavelength.
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Fig. VIII-29 The spectral shape of a broadband pulse is different vs. frequency and wavelength.
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VIII. Ultrafast optics electromagnetic pulses: propagation & properties

Bandwidth expressed in units of frequency, wave number and wavelength

1

Wave number: —

c 1 1 1

v=— = dv=d - C = [0 —|=0v— (VII-61)

Wavelength: A

V=— = |—|=—% = |[OAL=0Vv— (VIII-62)

In units of frequency and wave number, the bandwidth of a Fourier-limited pulse is independent of its carrier frequency. In
wavelength units, the bandwidth depends on the carrier wavelength, too.

Phase wrapping and unwrapping

The phase is often represented within the interval (—7,7t) and called “wrapped” phase. It is often helpful to avoid sudden

phase jumps (e.g. if it has to be differentiated), which frequently show up in this representation, by “unwrapping” it. This can
be done by adding or subtracting 27t whenever there isa 27 phase jump (Fig. VIII-30).

wrapped phase unwrapped phase
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B RN 8] it T = & | / )
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Fig. VIII-30 Phase unwrapping for a pulse with a quadratic spectral phase.

Phase blanking
In calculations or in evaluation of measured data, we often end up with dramatic phase variations in spectral or temporal

ranges, where the intensity is (close to) zero (Fig. VIII-31, left panel). When the intensity is zero, the phase is irrelevant.
When the intensity is nearly zero, the phase is nearly irrelevant.
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VIII. Ultrafast optics electromagnetic pulses: propagation & properties

Phase blanking involves simply not plotting the phase when the intensity is close to zero (Fig. VIII-31, right panel). One has
to choose the intensity level, below which the phase is disregarded, very carefully.

without phase blanking with phase blanking
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Fig. VIII-31
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