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Electromagnetic pulses: propagation & properties1
 
 
 
Propagation equation, group velocity, group velocity dispersion 
 
 
An electric field wave packet propagating in a laser beam along the z axis can be described as  
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where a(z,t) is the slowly-varying temporal envelope, F(x,y,z) is the transverse amplitude distribution of the light wavepacket 
(henceforth briefly: pulse), ν0 = ω0/2π is the carrier frequency and k0 = ω0n(ω0)/c determines the carrier wavelength (as λ0 = 
2π/k0) of the wavepacket. In the absence of an excessively broad bandwidth and strong nonlinearities, F(x,y,z) can be well 
approximated with the distribution valid for a monochromatic laser beam at ω0 and can be separated out from the equation 
for a(z,t). Under these circumstances, a(z,t) obeys the following pulse propagation equation (Eq. IV-127 in Chapter IV-4): 
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where the parameters  are defined by the Taylor expansion of the wave vector 0 1 2, ,k k k
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and the effects of the higher-order terms proportional to k k  was neglected in (VIII-19) 3 4, ,...
 
 
Slowly-varying amplitude approximation 
 
 
With the slowly-varying amplitude approximation in space & in time, respectively2  
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1 The majority of figures and several derivations have been adapted from the Ultrafast Optics lecture course of Prof. Rick Trebino at the 
Georgia Institute of Technology, Atlanta. 
2 Note that the nature of these approximations is very different: whilst Eq. (VIII-21a) holds if the variation of the electric field amplitude and 
hence the pulse shape is small upon travelling a distance equal to the carrier wavelength, Eq. (VIII-21b) expresses that the pulse is long 
enough so that its electric field amplitude varies – at any position – within the carrier oscillation period. Whereas the first approximation is 
to be fulfilled by the propagation medium, the second one is to be met by the pulse itself. 
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and transformation to the “retarded” frame of reference 
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moving with a speed   we obtain11/gv = k 3  
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where we neglected terms of third order and higher in (VIII-20) and assumed that the dominant nonlinearity is the optical Kerr 
effect, i.e. and intensity dependent refractive index  
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Equation VIII-23 describes optical pulse propagation in a dispersive & nonlinear medium, and due to the formal analogy, has 
been dubbed the nonlinear Schrödinger equation. It is of key importance for optical fibre communication and, as we shall 
see, for describing femtosecond pulse formation in mode-locked solid state lasers.   
 
In (VIII-23) k2 = 0 and n2 = 0 implies ( , ) /a z z∂ τ ∂ = 0 , that is the pulse propagates undistorted with its peak “locked” to 

 all the time. That is, the pulse propagates at a speed of v0τ = g  
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which is therefore referred to as group velocity and consequently  
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is the variation of this quantity with frequency, the group velocity dispersion. Currently neglected, higher-order terms in the 
expansion of the wave vector introduce higher-order derivatives with respect to τ in the pulse propagation equation and must 
not be ignored if either k2  is small or the spectral width of the wavepacket is large.  

                                                 
3 For derivation see Chapter IV-4. 
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 equal to the phase velocity  
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if and only if       
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Frequency-domain description of electromagnetic pulses  

he electric field of an electromagnetic wavepacket can be expressed in terms of its Fourier components as 
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( , )E z ω  describes the wavepacket as uniquely as ( , )E z t does. ( , )E z ω  is related to the Fourier-transform of the complex 
ld amplitude 
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which is the time it takes the pulse to travel a distance L, termed the group delay and   
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measures the variation of this delay with ω and is called the group-delay dispersion. 
 
 
The frequency-domain description of light pulse propagation through linear media is now as simple as follows: the frequency 
spectrum of the output pulse is obtained from that of the input pulse by (VIII-32) and inverse Fourier transform yields the 
output waveform (Fig. VIII-13). The procedure is equivalent to solving the differential equation (VIII-19) for PNL = 0, but is 
much more straightforward.  
 
 
 
 
 
 

 
  
                                          Fig. VIII-13  
 
 
 
Physical implication of the spectral phase shift ( )ϕ ω   
 
It is the phase shift, the individual spectral components of a wavepacket suffer upon propagation. Let us see how the linear 
term in the expansion (VIII-27) affects the pulse. Fig. VIII-14a shows the situation at z = 0 under the assumption that all the 
component waves have a zero phase at the pulse centre.  
If after some propagation a phase shift 1 0( ) ( )ϕ ω =ϕ ω − ω linearly varying with frequency accumulates, the instant at 
which all the waves are in phase and hence create the pulse is delayed in time (Fig. VIII-14b). The phase shift linear in 
frequency indeed introduces a time delay (group delay) as concluded before!   
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                                         Fig. VIII-14a 
 
 
 

 
                                      Fig. VIII-14b 
 
 
 
Time-domain description of electromagnetic pulses: decomposition into carrier and envelope 
 
 
Decomposition of a light wavepacket into carrier and envelope is mainly motivated by the vastly simplified description of its 
propagation in terms of its complex amplitude . The respective pulse propagation equations applying for different 
nonlinear and dispersive media and allowing diffraction in the paraxial approximation (3D propagation) can be found in T. 
Brabec, F. Krausz: Reviews of Modern Physics 72, pp. 545-591 (2000).  

( , )a z t

 
How can we define the complex amplitude from the waveform ?  ( )a t ( )E t
 
The recipe is as simple as follows:  

1. calculate or measure the Fourier-spectrum at positive frequencies + ω( )E ;  

2. from this determine by shifting ω( )a + ω( )E with ω0 (see Fig. VIII-12), i.e. +ω = ω + ω0( ) ( )a E  
3. calculate ( )a t from ω( )a by inverse Fourier transform 
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How to define ω ?  0
 
In order to avoid fast oscillations in ( )a t , the reference frequency ω0 must be close to the centre of + ω( )E . The precise 

choice is not critical for describing pulse propagation on the basis of ( )a t . There are several possible definitions of ω0 , one 
of which  
 
 

2
0

0 2
0

( )
( )

E d

E d

∞

∞

ω ω ω
ω = ω =

ω ω
∫

∫
                                                                                                                    (VIII-37) 

 
 
stands out due to minimising the intensity-weighted phase variation of . As a result of this choice, the phase of ( )a t φ( )t

φ= ( )( ) ( ) i ta t a t e is a slowly-varying function, i.e. exhibits little variation over the oscillation cycle . In these 
lecture notes we shall use this definition unless otherwise stated. 

= π ω0 2 /T 0

  
Is the carrier-envelope decomposition meaningful for pulse durations approaching = π ω0 02 /T ? 
 
To legitimise the concept of carrier and envelope we must require that ω0 and ( )a t remain invariant under a change of 

in  φ0
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A shift of by some ∆φ yields the new wave form φ0
0 0[ ]( ) (1/ 2) ( ) . .i t iE t a t e c c− ω + φ +∆φ′ = + In order that 

the definition of andω0 ( )a t be self-consistent, the above procedure must yield ′ω = ω0 0 . Note that this requirement is 

independent of the specific definition of . It has been foundω0
4 that this requirement is fulfilled for pulse durations (full width 

at half maximum, FWHM, of the intensity profile 2( )a t ) approaching the wave cycle = π ω0 02 /T .      
 
 
Lowest-order propagation effect in the time domain: shift of the carrier with respect to the envelope   
 
 
When describing pulse propagation in the time domain, which is the method of choice in the presence of nonlinear effects, 
i.e. PNL ≠ 0 in (VIII-19), it is expedient to use the retarded frame of reference defined by (VIII-22), in which the pulse centres 
at at any time during propagation. 0τ =
 
In this frame we can write 
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with 
 

                                                 
4 T. Brabec and F. Krausz, Phys. Rev. Lett. 78, 3282 (1997); T. Brabec and F. Krausz, Rev. Mod. Phys.72, 545-591 (1997).  
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which can be obtained by a simple substitution of the coordinate transformation (VIII-22) into (VIII-18) by assuming F(x,y,z) 
=1. The complex amplitude is related to the cycle-averaged intensity (see. IV-34) as ( , )a z τ
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and can be decomposed into a real amplitude ( , )a z τ and a phase  
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Substituting this expression into (VIII-39) yields 
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The phase is – by definition – the phase of the electric field at z=0 and at τ=0. Its physical meaning is the positioning of 
the central oscillation cycle in the carrier wave with respect to the pulse peak. The phase term 

φ00
′φ ( )z shifts the carrier wave 

as a whole with respect to the pulse peak in proportion to the propagation distance z. This shift is a consequence of a 
difference between their propagation velocities (phase and group velocity) in (VIII-40) as shown in Fig. VIII-15.  
We can combine φ  and 00 ′φ ( )z into a single phase term 
 
 

0
0 00 00 0 00

1 1( ) ( ) 2
ph g

dnz z z
v v d λ

⎛ ⎞ ⎛ ⎞′φ = φ + φ = φ + ω − = φ + π⎜ ⎟ ⎜ ⎟⎜ ⎟ λ⎝ ⎠⎝ ⎠
z                 (VIII-44) 

 
 
defining the timing of the central cycle with respect to the envelope at any position during propagation.  
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φ´(z)E(0,τ) E(z,τ)

 
                  Fig. VIII-15                   Fig. VIII-15 
  
  
The last expression in (VIII-44) has been derived from the definition of The last expression in (VIII-44) has been derived from the definition of phv and by substituting ω = into the 
relevant expressions (exercise). This expression implies that the carrier is offset with respect to the pulse envelope by a 
phase shift π over a propagation distance of 
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This characteristic propagation length has been termed dephasing length.5 In the visible and near infrared spectral range it is 
as short as 10-50 micrometers for transparent materials. The absolute phase typically becomes relevant only if the pulse 
contains less than three oscillation cycles (Fig. VIII-16).  
 
 
 

 
Fig. VIII-16 
 
 
 
 
 
 

                                                 
5 L. Xu, Ch. Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, Opt. Lett. 21, 2008 (1996). 
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Time-dependent phase: instantaneous frequency, chirped pulse 
 
 
The time-dependent phase φ τ( , )z introduces a variation of the instantaneous carrier frequency across the pulse. To see 
this, consider at some time, τ , the total temporal phase of the wave, τφ    
 

0 ( , )zτφ = ω τ − φ τ  
 
which contains a rapidly varying term proportional to the carrier frequency and a slowly-varying term  φ τ .  Exactly one 
period, T, later, the total phase will – by definition – increase to  
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where φ τ +( )T is the slowly-varying temporal phase at instant τ+T. Subtracting these two equations  
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and dividing the new one by T: 
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We recognise the left-hand side to be equal to the instantaneous carrier frequency of the wavepacket at the time, τ . Further, 
the second term on the right-hand side can be replaced with φ τ/d d because of the slowly-varying nature of φ τ( ) , 
following from the definition of ω0 , Eq. (VIII-38) . The instantaneous carrier frequency then becomes 
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A linear variation of φ τ( , )z with τ merely shifts introduces a constant shift of ω0 . If the carrier frequency is defined by (VIII-
37), this term generally vanishes. It may, however, emerge, during propagation if, for instance, some nonlinearity causes an 
asymmetric broadening of the spectrum. The next higher-order term in the Taylor expansion of the temporally-varying phase 
causes a linear variation of the instantaneous frequency. 
 
 
Gaussian pulse modelling of propagation through a linear medium 
 
 
Well-behaved pulses with a bell-shaped intensity profile can be modelled – in first approximation – as a Gaussian pulse. A 
Gaussian pulse with a complex Gaussian coefficient can model a pulse with a linear chirp   γ = α + βi
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Clearly, α determines the pulse duration τp. If we define it as the full width at half maximum, FWHM of the intensity 

profile 2( )E τ the relationship between τp and α reads as 
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On the other hand, β results in an instantaneous frequency  
 

0( ) 2instω τ = ω + βτ                                                                                                                         (VIII-49) 
 
that increases linearly in time. In analogy to bird sounds, such a pulse is called a “chirped” pulse, in this case a linearly-
chirped pulse. Fig. VIII-17 shows the electric field of Gaussian pulses for 0β > , positive chirp (a), and for , negative 
chirp, (b).   

0β <

 

 
 
             Fig. VIII-17a Positively-chirped Gaussian pulse. 
 

 
 
  Fig. VIII-17b Negatively-chirped Gaussian pulse. 
 
 
The frequency spectrum of a Gaussian pulse can be written as (see Chapter IV-4) 
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The spectrum of a Gaussian pulse is Gaussian too! The frequency bandwidth can now be defined – analogously to τp – as 

the full width of half maximum of 2( )E ω   
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Resulting in the time-bandwidth product  
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which is minimum when . In this case the pulse is referred to as bandwidth-limited or Fourier-limited because its 
duration is minimum for the given bandwidth and pulse shape.  

0β =

 
 
Lowest-order pulse shaping effects preserve the shape of a Gaussian pulse 
 
 
The power of modelling pulse propagation with a Gaussian pulse relates to the fact that the most important pulse shaping 
effects such as (lowest-order) amplitude modulation, phase modulation, spectral filtering and dispersion can – in first-order 
approximation – be modelled to preserve the Gaussian nature of the pulse!  
 
In fact, multiplying the Gaussian pulse with  
 

( )2( ) expAM AMT Kτ = − τ      ⇒    AMK′α = α +   ⇒   amplitude modulation     

                                                                                                                                  KAM > 0 : pulse shortening 
                                                                                                            KAM < 0 : pulse broadening 
 

( )2( ) expPM PMT iKτ = − τ      ⇒    PMK′β = β +   ⇒   phase modulation                                     

                                                                                                                                  KPM > 0 : positive chirp (for β=0) 
                                                                                                            KPM < 0 : negative chirp (for β=0) 
 
in the time domain, or with  
 

2
0( ) exp ( )SF SFT K⎡ ⎤ω = − ω− ω⎣ ⎦      ⇒    

1 1
4 4 SFK= +

′γ γ
  ⇒   spectral filtering               

                                                                                                                                    KSF > 0 : spectral narrowing 
                                                                                                              KSF < 0 : spectral broadening 
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dispersion 

performs these manipulations and preserves the pulse as a linearly-chirped Gaussian! As a consequence, basic spectral 
and temporal manipulations of light pulses can be modelled  - in first approximation – in terms of a change in the 
Gaussian pulse parameter  analytically! γ
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Phase shift first-order in frequency: a shift in time 
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Phase shift second-order in frequency: positive or negative linear chirp 
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   Fig. VIII-21 
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Beyond imposing a linear chirp, the quadratic spectral phase shift has stretched a pulse with originally 3-fs duration to a ~14-
fs pulse. 
 
Phase shift third-order in frequency: satellite pulses 
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 Fig. VIII-22 Trailing satellite pulses are indicative of positive spectral cubic phase. 
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Fig. VIII-23 Leading satellite pulses are indicative of positive spectral cubic phase. 
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Phase shift fourth-order in frequency: leading and trailing pulse wings 
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Fig. VIII-24 Positive quadratic spectral phase implies higher frequencies in the trailing wing. 
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 Fig. VIII-25 Negative quadratic spectral phase implies higher frequencies in the leading wing. 
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Pulse characteristics: duration, time-bandwidth product 
 
 
There are many possible definitions of the duration (or “width” or “length”) of a wavepacket.  
 
Effective width: the width of a rectangle whose height and area are the same as those of the pulse (Fig. VIII-26). 
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Rms (root-mean-squared) width: second-order moment of the intensity profile (Fig. VIII-27). 
          
 

 

 
 
 
 
F
 
F
 

F
 
 

    
   
 

                                                                                         

1/ 2
22

2

( )

( )
rms

a d

a d

∞

−∞
∞

−∞

⎡ ⎤
τ τ τ⎢ ⎥

⎢ ⎥τ =
⎢ ⎥

τ τ⎢ ⎥
⎣ ⎦

∫

∫
                   (VIII-58) 

          

ig. VIII-27 
τ

τrms

WHM (full width at half maximum): distance between the half-maximum points (Fig. VIII-28). 
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The FWHM is the most frequently used measure for the duration of ultrashort light pulses. However, it may be used only for 
well-behaved pulses with a bell-shaped profile and small wings or satellites because the latter are ignored up to a height of 
49.99%!   
 
 
Time-bandwidth product 
 
According to the Fourier theorem the product of a function’s extension in the time domain, ∆τ , and the frequency domain,  

, has a minimum. ∆ω
 
Let us define the widths of the intensity profile ( )f τ and its Fourier-transform, ( )F ω , using the definition (VIII-57) and 
assuming ( )f τ and ( )F ω peak at 0: 
 
 

1 ( )
(0)

f d
f

∞

−∞
∆τ = τ τ∫        ;           

1 ( )
(0)

F d
F

∞

−∞
∆ω = ω ω∫  

 
 
Then  
 
 

[0]1 1 (0)( ) ( )
(0) (0) (0)

i Ff d f e d
f f

∞ ∞
τ

−∞ −∞
∆τ ≥ τ τ = τ τ =∫ ∫ f

 

 
 
and  
 
 

[0]1 1 2 (0)( ) ( )
(0) (0) (0)

i fF d F e d
F F

∞ ∞
− ω

−∞ −∞

π
∆ω ≥ ω ω = ω ω =∫ ∫ F

 

 
 
 
Combining the two latter results 
 
 
  

(0) (0)2
(0) (0)

f F
F f

∆ω∆τ ≥ π      ⇒        ;   2∆ω∆τ ≥ π 1∆ν∆τ ≥                                                 (VIII-59) 

 
 
 
Different definitions of the widths  yield different constants, which – for most definitions (incl. FWHM) also depend on the 
pulse shape. 
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Temporal and spectral shapes of simple electromagnetic pulses6

 
 
 

 
 
 
  
 
 
 
 
 
 
 

 
6 J.-C. Diels, W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, San Diego, USA, 1996).  
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Transformation between wavelength and frequency 
 

The spectrum and spectral phase is often measured versus wavelength 
2( ) ( )S Eλ λλ ≡ λ , ( )λϕ λ , rather than 

frequency, 
2 2( ) ( ) ( )S E Eω ωω ≡ ω ≡ ω , ( ) ( )ωϕ ω ≡ ϕ ω , therefore a transformation rule is required. 

 
By using  2 /cω = π λ
   
The phase can be easily transformed 
 
 

( ) (2 / )cλ ωϕ λ = ϕ π λ                                                                                                                             (VIII-60a) 
 
 
For transforming the spectrum, we note that ( )Sλ λ and ( )Sω ω are the energy density within a unit wavelength and 
frequency interval, hence the total energy in the pulse is given by  
 
 

( ) ( )pW S d S d
∞ ∞

λ ω
−∞ −∞

= λ λ = ω∫ ∫ ω  

 

Changing variables and using  
2/ 2 /d d cω λ = − π λ

 
 

2 2
2 2( ) (2 / ) (2 / )c cS d S c d S c d

∞ −∞ ∞

ω ω ω
−∞ ∞ −∞

− π π
ω ω = π λ λ = π λ

λ λ
∫ ∫ ∫ λ  

 
 
From which we obtain 
 

2
2( ) (2 / ) cS S cλ ω
π

λ = π λ
λ

                                                                                                              (VIII-60b) 

 
Eq. (VIII-60) implies different spectral shapes of broadband signals vs. frequency and wavelength. 
 

 
 
Fig. VIII-29 The spectral shape of a broadband pulse is different vs. frequency and wavelength. 
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Bandwidth expressed in units of  frequency, wave number and  wavelength  
 
 

Wave number: 
1
λ

 

 

c
ν =

λ
        ⇒

1d d c⎛ ⎞ν = ⎜ ⎟λ⎝ ⎠
    ⇒      

1 1
c

⎛ ⎞δ = δν⎜ ⎟λ⎝ ⎠
                                                            (VIII-61)                                 

 
 
Wavelength:  λ
 
 
 

c
ν =

λ
        ⇒ 2

d c
d

ν
=

λ λ
    ⇒     

2

c
λ

δλ = δν                                                                           (VIII-62)                                 

 
 
 
In units of frequency and wave number, the bandwidth of a Fourier-limited pulse is independent of its carrier frequency. In 
wavelength units, the bandwidth depends on the carrier wavelength, too. 
 
 
 
Phase wrapping and unwrapping 
 
 
The phase is often represented within the interval ( , )−π π  and called “wrapped” phase. It is often helpful to avoid sudden 
phase jumps (e.g. if it has to be differentiated), which frequently show up in this representation, by “unwrapping” it. This can 
be done by adding or subtracting 2 whenever there is a  2π π  phase jump (Fig. VIII-30). 
 

 
 
Fig. VIII-30 Phase unwrapping for a pulse with a quadratic spectral phase. 
 
 
 
Phase blanking 
 
In calculations or in evaluation of measured data, we often end up with dramatic phase variations in spectral or temporal 
ranges, where the intensity is (close to) zero (Fig. VIII-31, left panel). When the intensity is zero, the phase is irrelevant. 
When the intensity is nearly zero, the phase is nearly irrelevant.  
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Phase blanking involves simply not plotting the phase when the intensity is close to zero (Fig. VIII-31, right panel). One has 
to choose the intensity level, below which the phase is disregarded, very carefully.    
 
 

 
Fig. VIII-31 
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