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VII. Relativistic optics  
 
 
Electromagnetic fields in inertial frames of reference  
 
 
Galilean transformation 
 
Before 1900 the space and time coordinates (x, y, z, t) and (x’, y’, z’, t’) of reference frames K and K’ moving with constant 
speeds differing by v were believed to be related by Galilean transformation  
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provided the origins in space and time are chosen suitably. Both the Newton equation of classical mechanics and the 
Schrödinger equation of quantum mechanics can be shown to be invariant under Galilean transformation. For instance, if in 
K’ the Newton equations for a mechanical system consisting of a group of particles interacting via two-body potentials read 
as  
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then in K the equation of motion has the same form 
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By contrast, the equation governing wave phenomena is not preserved under the transformation (VII-1). For a field  ψ(r’,t’) 
satisfying the wave equation  
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 in K’ the Galilean transformation yields the equation 
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in the reference frame K. For sound waves, the lack of invariance under transformation from one frame moving with a 
constant velocity to another is acceptable given the fact that propagation of these waves relies on a transmitting medium. 
The preferred reference frame K’ in which (VII-4) is valid is obviously the frame in which the propagation medium is at rest.  
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Postulates of Einstein’s special theory of relativity   
 
 
Analogously, a preferred reference frame for light propagation calls for a medium through which light can propagate. This 
medium has been called the ether and assumed to permeate all space and to be of negligible density and to have negligible 
interaction with matter. However, efforts to observe the motion of laboratories on the Earth relative to the rest frame of ether, 
for example, the famous Michelson-Morley experiment, had failed. Fizeau’s experiments on the velocity of light in moving 
fluids could also be understood in terms of the ether hypothesis only by assuming that the ether was dragged along partially 
by the moving fluid, with the effectiveness of the medium in dragging the ether related to its index of refraction! 
 
These experiments made Einstein abandon the hypothesis of an ether. The only alternative was to modify the transformation 
of the space and time coordinates between uniformly moving reference frames so that Maxwell’s equations become invariant 
under the new transformation. This immediately implied that the laws of mechanics were in need of modifications.  
 
To establish the new transformation, Einstein introduced two postulates. 
 

1. Postulate of relativity: The laws of nature and the results of all experiments performed in a 
uniformly moving frame of reference are independent of the translational motion of the system 
as a whole.  
 

       These equivalent coordinate systems are called inertial reference frames. 
 
2. Postulate of the constancy of the speed of light: The speed of light is constant in every   
       frame of reference, independently of the motion of its source. 

 
 
From these two postulates the rules of the new transformation of space and time, named after Lorentz, can be derived in a 
straightforward manner1. Before we address the derivation of the Lorentz transformation of coordinates, we summarize a few 
major experiments backing these postulates, performed long after Einstein proposed them. 
 
 
Experimental verification of Einstein’s relativity 
  
It is a general belief that the null result of the Michelson-Morles experiment (1887) provided an unambiguous evidence for 
the second postulate of the Special Theory of Relativity. This is not true. This experiment can also be explained without 
abandoning the concept of an ether by the hypothesis of the FitzGerald-Lorentz contraction. Compelling evidence came long 
after the formulation of the theory by Einstein.2 One of the most beautiful class of experiments draws on gamma-ray emission 
from nuclei with an extremely narrow bandwidth resulting from the Mössbauer effect.  
 
Let’s suppose that the inertial frames K and K’  are connected with the Galilean coordinate transformation. The phase of a 
plane wave must be invariant quantity, the same in all coordinate frames: 
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Expressing t and r in terms of t’ and r’ from (VII-1) leads to  
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1 The general structure of the Lorentz transformation can be deduced from the first postulate alone, see e.g. N. D. Mermin, Relativity 
without light, Am. J. Phys. 52, 119 (1984).  
2 A summary of available evidence is given by Shankland et al., Rev. Mod. Phys. 27, 167 (1955). 
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This equality must hold for values of t’ and r’. As a consequence, the coefficients of t’, x′ , y ′ , on both sides must be 
equal. From this requirement, we obtain the Doppler-shift formulas for Galilean relativity:  

z′
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The direction of the wave vector (given by n) appears to be invariant. However, the direction of energy flow changes from 
one frame to the other. Suppose that inertial frame K is the preferential reference frame, in which the ether is at rest, hence 
the light wave propagates at c with both the wave vector and the direction of energy flow (direction of movement of the wave 
packet represented by the segments of a plane wave in Fig. VII-1) directed along n.  
 

 
 
     Fig. VII-1 
 
 
The direction of energy flow is not parallel to n in K’ but parallel with the unit vector   
 
 

c
c
−

=
−

n vm
n v

                                                                                                                                                             (VII-9) 

 
 
The experiments are performed in the laboratory, therefore it is expedient to be able to express the Doppler formulas (VII-8) 
in terms of m appropriate to the laboratory rather than n. To this end, we write n in terms of m. In the limit of  

0 /v c << 1we can – according to Fig. VII-2 – approximately write 
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where v0  is the velocity of the laboratory relative to the ether rest frame.
 
 

 
 
Fig. VII-2 
 
 
A plane wave having a frequency ω in the ether rest frame will have a frequency  
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in the laboratory frame and a frequency  
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in a frame K1 moving with a velocity v1 = u1 + v0 relative to the ether rest frame. 
The frequencies ω1 and ω0 are connected by  
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We obtained (VII-12) from (VII-11) by eliminating n, which can not be measured, by means of (VII-10). Equation (VII-12) is a 
consequence of the assumed validity of the wave equation (VII-4) in the ether rest frame and that of Galilean coordinate 
transformation connecting inertial frames. Owing to the appearance of  v0 it is obviously able to prove or disprove the 
existence of a preferred frame of reference and the validity of Galilean relativity.  
 
Differences between ω1 and ω0 can be measured accurately if the source and detectors have a narrow bandwidth. These 
requirements can be best met by using two Mössbauer systems of identical ω0, one emitter and one absorber. Suppose they 
move with u1 and u2 in the laboratory. Eq. (VII-12) then implies for the difference frequency between the emitter and the 
absorber 
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In the first resonant absorption experiment of this type3 the emitter and the absorber were located on the opposite ends of a 
rod of length 2R rotated about its centre with an angular velocity Ω as depicted in Fig. VII-3. For this specific case (u1 - 
u2)m= 0 and the fractional frequency difference is predicted as 
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                                                      Fig. VII-3 
 
 
 
In the experiment of Champeney, Isaak and Khan the Mössbauer line was at a photon energy of 14.4 keV with a fractional 
bandwidth of 2x10-12, the emitter and the absorber foils were separated by 2R = 8cm and the highest rotation speed close to 
8000 s-1. At a rotational speed of ~6000 s-1 Eq. (VII-14) yields a difference frequency equal to the Mössbauer line width for an 
ether drift velocity of ~200m/s. 
Champeney and co performed the measurement in 4-hour cycles and searched for different ether drift velocities relative to 
their laboratory due to the earth’s rotation. Their experiment yielded a maximum ether drift speed component orthogonal to 
the earth’s axis of rotation of  < 5 m/s. An improved experiment in 1970 set the limit of 5 cm/s. Clearly, the existence of a 
preferential reference frame and with that the idea of the ether must be abandoned, the first postulate of the special theory of 
relativity has been confirmed.     
 
The second postulate, the constancy of the speed of light irrespective of the motion of its source could be unquestionably 
verified also only many years after postulating this law, in a beautiful experiment4 performed at CERN, Geneva, in 1964. The 
speed of 6 GeV gamma-ray photons produced in the decay of energetic pions flying with a speed of v = 0.99975c was 
measured by time of flight. Within the experimental error the speed c’ of the photons emitted by the fast moving particles was 
found to be equal to c, written as c’ = c + kv, the experiment yielded k = (0±1.3)x10-4. Other experiments5 confirmed this 
result and provided evidence for the constancy of the light speed over its frequency, up to photon energies of 7 GeV6, 
establishing conclusively the validity of the second postulate of special relativity.    
 
Clearly, the constancy of the speed of light, independently of the motion of the source, destroys the concept of time 
as a universal variable independent of the spatial coordinates. Experiments taught us that light propagates in the 
                                                 
3 D. C. Champeney, G. R. Isaak, A. M. Khan, Phys. Lett. 7, 241 (1963); G. R. Isaak, Phys. Bull. 21, 255 (1970). 
4 T. Alvager, J. M. Bailey, F. J. M. Farley, J. Kjellman, and I. Wallin, Phys. Lett. 12, 260 (1964). 
5 G. R. Kalbfleisch, N. Baggett, E. C. Fowler, Phys. Rev. Lett. 43, 1361 (1979). 
6 B. C. Brown  et al. Phys. Rev. Lett. 30, 763 (1973).
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same way in any inertial frame, consequently Maxwell’s equations must be invariant under the transformation 
connecting two inertial frames. Galilean coordinate transformation must be modified to meet this requirement. 
 
 
 
 
Lorentz transformation – derivation from the requirement of the relativistic invariance of Maxwell’s equations 
 
 
A simple Gedankenexperiment reveals that the constancy of the speed of light indeed requires us to abandon the concept of 
absolute time. Imagine a “light clock” made up of a photon bouncing back and forth between two parallel mirrors (Fig. VII-4a). 
The clock “ticks” each time the photon completes a round-trip journey.  
 

 
 
     Fig. VII-4a 
 
 
Let’s now imagine that the clock is put on a space shuttle and is moved with respect to us with a high, constant speed. Whilst 
a passenger of this space shuttle still sees the photon moving perpendicularly to the mirror surfaces in Fig. VII-4a, from our 
perspective, the photon in the sliding clock must travel at an angle, on a diagonal path (Fig. VII-4b).  
 
 

 
 
Fig. VII-4b 
 
 
This path is clearly longer and therefore because the photon’s speed is the same in both frames we find that, from our 
perspective the moving clock ticks less frequently. From our perspective the passage of time is slowed down in a frame 
moving with respect to us.   
 
The change in the passage of time is clearly inconsistent with Galilean relativity and calls for a modified coordinate 
transformation. In order to find this new transformation, let us consider two inertial frames of reference K  (t, x, y, z) and K’ (t’, 
x’, y’, z’). The coordinate axes in the two frames are parallel and oriented so that K’ is moving in the positive z direction with 
speed v as viewed from K (Fig. VII-5).   
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                Fig. VII-5 
 
 
We derive the proper coordinate transformation from the requirement of the invariance of Maxwell’s equations under the new 
transformation. Since there is no relative motion along the x and y axes, we have x’ = x and y’ =  y. Consequently, we can 
focus on the transformation of the z and t coordinates. 
To this end, we consider a plane electromagnetic wave propagating along the z direction, with its electric and magnetic fields 
polarized along the x and y direction, respectively: 
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The fields must obey the first and second Maxwell’s equations (IV-1 and IV-2)  in both coordinate systems, hence 
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The connection between the coordinates z’, t ’ and z, t must be linear and express that the origin of  K’, which is defined by z’ 
= 0 moves with v along the z axis of K. These conditions are fulfilled by  
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These relations are indeed linear. It is implicit in (VII-18) that the origins of the spatial coordinates in K and K’ are coincident 
at t = t’ = 0. (VII-18a) reveals that z’ = 0 for z = vt, ensuring that the origin of  K’ moves with v with respect to K. Inverting (VII-
18) yields 
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We now require – in the spirit of the first postulate – that the form of (VII-19) is identical to that of (VII-18) except for a change 
in sign in front of v, reflecting that from the perspective of an observer residing in K’, K moves with v in the opposite (i.e. 
negative z’) direction. This requirement implies 
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By introducing the notation 
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the new coordinate transformation fulfilling the requirements of the first postulate takes the form  
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If we now wish to transform Maxwell’s equations from K to K’ we will have to make use of  
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which results in   
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Substituting the differential operations (VII-24) into (VII-16) and (VII-17) leads to   
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These equations take the same form as the original equations in frame K if and only if the expressions in the parentheses 
can be identified as the transformed field quantities 
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which dictates 
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From the requirement of the invariance of Maxwell’s equations under the new transformation, we have now obtained the last 
unknown parameter of the transformation. Substituting (VII-26) into (VII-21) yields 
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With this the Lorentz transformation takes the form  
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From our analysis we have also obtained the transformation rules for the electromagnetic fields 
 
 

2( ) ;x x y y y x
vE E vB B B E
c

⎛ ⎞′ ′= γ − = γ −⎜
⎝ ⎠

⎟                                                        (VII-29a) 

 
 
The other transverse components,  and yE xB , can be obtained by applying the same procedure after  changing the 
polarisation of the plane wave ansatz (VII-15): 
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The transformation laws of the z-component of the fields will be derived later.  
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