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� Motivation for FELs

� What is an FEL?

� Undulators and Wigglers

� SASE and X-Ray-FEL (XFEL)

� Bubble-XFEL
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Motivation for Photons

• why trying to “transform” bubble electrons into photons ?

• advantage of photons:

� photons as atomic probes both in space and time

� energy of 15 keV corresponds to wavelength of 0.8 Å

� pulses can be on scale of attoseconds (1 as = 10-18 s)

� atomic scale of space = a0 = 0.53 Å (Bohr radius)

� atomic scale of time ≈ 2πa0/v0 ≈ 150 as (v0 ≈ c/137)

� X-ray photons can penetrate matter well beyond surface

� (ultrabrilliant ) photons can image a single molecule



High 
photon flux

Small freq. 
bandwidth

Low 
divergence

Small 
source size

FEL as a High-Brilliance Light Source

[Peak brilliance] = Photons/(s·mrad² ·mm²·0.1%bandwidth)

TT-XFEL

DESY

SLAC



Why an X-ray Free-Electron Laser ?
• time scale of chemical reactions: fs

• X-ray: wavelength of atomic scale

• fs-X-ray pulse → “4D imaging with atomic resolution”

• ultrafast chemistry & biology:

� conformational changes

� electron transfers in molecules

• phase transitions in material science

• inner shell ionization

• single molecule imaging



Single Molecule Imaging I

• why single molecule imaging?

→ 70 % of all proteins in medical drugs cannot be crystallized !

• problem: Coulomb explosion 

→ ultrafast X-ray pulses needed:



Single Molecule Imaging II

diffraction pattern of single shot

• ~1000 single shots necessary

• for each shot extract orientation

• superpose all shots

• extract structure information

• how to extract structure information?

mean number of elastically
scattered photons into pixel
of a CCD

intensity of X-ray
pulse

Time-dependent position of 
atoms in molecule 
(Coulomb explosion!)

change in wave vector 
due to scattering

form factor of
j-th atom



What is a Free-Electron Laser ?

� SASE = Self-Amplification of Spontaneous Emission:

thus, no seeding field required → XFEL realizable

� FEL = Free-Electron Laser

incoming wave

incoming wave

energy reservoir

optical pumping

stimulated emission

stimulated emission

incoming electrons

conventional laser:

energy reservoir



Spontaneous Synchrotron Radiation:
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Spontaneous Synchrotron Radiation:

Emission Angle

Electron rest frame: Hertz-Dipole Lab frame: Lorentz-trafo
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How to shake (=accelerate) electrons: undulator
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K-Parameter
)(     ),( sB

m

e
xssB

m

e
sx z

e
z

e γγ
&&&&&& =−=

);cos(
~

)( skBsB uz =with 22    , cxxcxx ββ ′′=′= &&&

)sin(
2

~
)( sk

cm

Be
sx u

e

u

γπ
λ=′

from

cm

Be
x

e

u

π
λ

γ 2

~
1

maxmax =′=Θ

cm

Be
K

e

u

π
λ
2

~
=

(compare with laser amplitude)
mc

eB

mc

eE
a

cBE

π
λ

π
λ

22 2

=
==

Undulator: 1≤K
Wiggler: 1>K

γ
1=ΘSsynchrotron radiation:

γ
K=ΘW

undulator:

constructive interference due ΘW < ΘS → coherence

Undulator period

Magnetic field strength



Relativistic Doppler Effect : 
Transformation from Co-Moving System into Lab System
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• transverse oscillation in lab system: ck
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Undulator: fundamental frequency

(most important equation)



Undulator: Spectral Width

finite duration: cNT wu /λ= with frequency  wω

continuous spectrum of partial 
waves: 
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FEL basics: most fundamental point

coherence condition

undulator

electron trajectory

radiation field

electron transverse motion in phase with radiation phase:

this means a net energy transfer from the kinetic energy of the 
electrons to the radiation field over the total undulator length
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FEL basics

electron-laser interaction : ∫ ∫−=−=∆ dtEvesdEeW LL
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phase Ψ between electron and radiation must not vary

usual phase 
space in FEL 
theory

electric laser 
field vector

Change in electron 
kinetic energy



Low-Gain/High-Gain
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• effect of laser-field, in analogy to K:

• Low-Gain: KL small → G few percent

• High-Gain: KL large → many electrons within separatrix →
laser field ≠ const, G large

(           !)aKL =

coupling between electron motion
and radiation field

loss of kinetic electron energy = 
gain of radiation field



Initial Energy in Low Gain Regime

operating slightly above resonance energy:

no over-all effect net effect: electrons 
transferred energy to 
radiation field



Madey Theorem

Madey-theorem : Gain is derivative of spontaneous spectrum

valid only for

low-gain regime 

spontaneous radiation

operate a bit off resonance, where max gain!



High Gain: SASE-FEL and micro-bunching

• SASE=Self-Amplification of
Spontaneous Emission

• no seeding field

• strong micro-bunching 

= 90°rotation in phase-space

Same phase 
space as before



incoherent emission amplitude e from random walk

(intensity ~ amplitude²)

SASE-FEL: coherent radiation

Micro-bunching! → coherent 
emission
note: N ~ 1010 !!!!



Induced energy
modulation

Increasing density
modulation

Enhanced emission

Run-away process
(collective instability )

The FEL process saturates when maximum density 
modulation (bunching) is achieved.

The FEL Instability



Characteristic Parameter: Pierce

• everything scales with the so-called Pierce paramter

• in FEL theory there is a 1d- and 3d-Pierce parameter

• ideal 1d-Pierce parameter:
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• typically ρ~10-4…-3

• real beams have energy spread and emittance….

undulator period

~ K (undulator parameter)

electron beam diameter

electron current

Alven current = 17 kA
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• ideal gain length :

• from FEL analysis: 

diffraction

emittance

energy spread

emittance [mm.mrad]

focusing: σx
2 = ßε

energy spread



Saturation length

Exponential 
Amplification

Saturation
(max. bunching)

Start-up 
Lethargy Besides an exponential growing mode, 

there is also an exponential decaying
mode which cancels the growth over 
the first few gain lengths .
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saturation length:

saturation power

spontaneous power after one gain length



…in practice: table-top FELs

experimental setup:

How to design something like that?

• FEL simulation (see next): same as for DESY+SLAC

• undulator design (“EM-studio”)

• electron tracking (“waves” + “GPT”)

• bubble: PIC code (“VPL” + “ILLUMINATION”)

• in future: “S2E” = start-to-end simulation



“GENESIS 1.3” code
code for SASE-FEL simulation:

• author: Sven Reiche (DESY, UCLA)

• based on FEL equations

• not a PIC code

• covers cm and nm scales

• explicit integration over undulator period: Uz λ=∆



Full simulation of “TT-XFEL”

Bandwidth

Spectrum

charme of our concept:

3 meter only!!!! 

ItItItIt’’’’s lasing !!!!s lasing !!!!s lasing !!!!s lasing !!!!

2·1012

phots/pulse!!



…but, before, just proof-of-principle…

take measured reference spectrum (unfolded for energy spread and 
emittance) and compare ratios of fundamental to first harmonic

on-axis              off-axis

SASE   

no SASE




