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VI. Quantum optics 
 
Quantization of the electromagnetic field  
 
 
Historically it was found that any attempt of a classical description of the motion electrons in atoms failed. Only quantum 
mechanics succeeded in describing phenomena as atomic spectra, electron diffraction, electrical conduction in crystals and – 
of central importance for photonics – the interaction of light with matter, including the operation of lasers. In quantum 
mechanics operators replace the familiar variables of classical theory and the state of the system is replaced by state 
vectors. This general procedure is not limited to any particular system, but – according to our current insight – must be 
applied to all classical variables to provide the most correct and most accurate description of nature among all currently 
available physical theories. According to this general procedure all observable quantities of physics including field variables 
describing wave phenomena must be accounted for by operators in the same way as we replaced coordinates, momenta or 
the energy of a mechanical system by operators in the previous chapter.  
 
The quantization of fields, that is the description of field variables by operators leads to quantum field theory, which in case of 
electromagnetic fields is referred to as quantum electrodynamics. The application of the laws of quantum electrodynamics to 
optical fields and their interaction with matter has been termed quantum optics. Beyond the consistent extension of the 
laws of quantum physics from mechanical systems to field variables (last sentence of the previous paragraph) 
quantum optics does not require any new postulates.  
 
Field quantization is also enforced by experimental evidence. The spectrum of blackbody radiation, the temporal evolution of 
spontaneous emission as well as the noise characteristics of laser radiation could only be explained in the framework of 
quantum optics.  
 
 
Quantum theory of the harmonic oscillator 
 
The modes of electromagnetic radiation in waveguides as well as in free space can be treated as harmonic oscillators, 
therefore we address the quantum mechanical description of a harmonic mechanical oscillator before proceeding to field 
quantization. 
 
The simplest harmonic oscillator is a mass attached to a spring, which provides a restoring force Kx proportional to the 
displacement x of the mass from its equilibrium position (Fig. VI-1). 
 
 

 
 
Fig. VI-1 
 
 
The Hamiltonian of this mechanical harmonic oscillator is given by  
 
 

2
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m

= + K x                                                                                                                                  (VI-1) 
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which – with Hamilton’s equations of motion (V-1) and (V-2) – leads to the Newton equation for the classical oscillator 
 

2

2
d xm
dt

= −Kx                                                                                                                                        (VI-2) 

 
with the well-known solution 
 
 

sin( )x A t= ω +ϕ                                                                                                                                (VI-3) 
 
 
where A is the amplitude, φ is the phase and  
 

 
K
m

ω=                                                                                                                                             (VI-4) 

 
is the (angular) frequency of the oscillation. Expressing K in terms of m and ω, we can rewrite the Hamiltonian of the 
harmonic oscillator as 
 
 

 
2 2 2 21H (p m ω x )

2m
= +                                                                                                                      (VI-5) 

 
 
The usual way of describing the harmonic oscillator quantum mechanically is to use the Schrödinger representation: replace 
p by  xi ∂∂− /h in (VI-5) and for obtaining the energy eigenvalues of the oscillator solve  
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m x
∂ ψ

− + ω ψ =
∂

h
ψ                                                                                                      (VI-6) 

 
 
 
Second quantization, creation and annihilation operators 
 
 
The solution of (VI-6) yields not only the energy eigenvalues but also the eigenfunctions ψ in terms of Hermite-Gaussian 
polynomials. However, we can also treat the harmonic oscillator in a more abstract way without the use of any particular 
quantum mechanical representation. The following treatment is borrowed from Dirac.1 First, we introduce the new operators  
 

1ˆ ˆ ˆ( )
2

a m
m

= ω
ωh

x ip+                                                                                                                        (VI-7a) 

 
 

† 1ˆ ˆ ˆ( )
2

a m
m

= ω
ωh

x ip−

                                                

                                                                                                                  (VI-7b) 

 
1 P. A. M. Dirac, The Principles of Quantum Mechanics, 4th ed. Oxford, 1957. 
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The operator is the Hermitian adjoint to a , since by definition p  and †â ˆ ˆ x̂ are Hermitian operators. The coefficients 
occurring in Eqs. (VI-7) have been chosen to simplify certain relations which follow. 
 
The commutation relation of  and    â †â
 

† † †ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆˆ ˆ[ , ] ( ) 1ia a aa a a p x x p= − = − =
h

                                                                                          (VI-8) 

 
follows (exercise) from that of  and p̂ x̂ given by (V-46) and will be intensively used in the following treatment. Inverting 
Eqs. (VI-7) yields 
 
 

†ˆ ˆˆ ( )
2

x a a
m

=
ω
h

+                                                                                                                                    (VI-9a) 

 
 

 
†ˆ ˆ ˆ( )

2
mp i aω

=
h a−                                                                                                                  (VI-9b) 

 
 
and substituting into (VI-5) leads to  
 
 

† † †1 1ˆ ( ) ( )
2 2

H a a aa a a= ω + = ω +h h                                                                                         (VI-10) 

 
 
and (VI-8) implies that  
 

† †ˆ ˆˆ ˆ ˆ[ , ] ; [ , ]a H a a H a= ω = − ωh ˆh                                                                                               (VI-11a,b) 
 
 
The expression of the Hamiltonian in terms of and a is often referred to as second quantization in textbooks.  †â ˆ
To obtain the energy eigenvalues and eigenvectors of the harmonic oscillator we start out from a particular energy 
eigenvector E′  and eigenvalue E’, apply the commutator of a  and H to this eigenvector and utilize (VI-11a) and ˆ ˆ

EEEH ′′=′ˆ  to obtain (exercise) 
 
 

( ) ( ) (ˆ ˆH a E E a E′ ′= − ωh )′                                                                                                          (VI-12) 

 
 
If E′  is an eigenvector of H  with an eigenvalue E’ then ˆ EaE ′=′′ ˆ  is also an eigenvector with an eigenvalue 

ω−′=′′ hEE . By repeated operation with a  on ˆ E′ , we find that Ean ′ˆ   is an eigenvector of with the eigenvalue Ĥ
ω−′ hnE . For a sufficiently large value of n, the eigenvalue appears to become negative. But are negative eigenvalues 
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possible? To answer this question, let us calculate the expectation value of energy in the energy eigenstate E′  by using 
(VI-10)  
 

† 1 1ˆ ˆ ˆ
2 2

E H E E a a E E E E E E E E⎛ ⎞ ⎛′ ′ ′ ′ ′ ′ ′′ ′′ ′ ′ ′= ω + = ω + =⎜ ⎟ ⎜
⎝ ⎠ ⎝

h h
⎞
⎟
⎠

                                 (VI-13)

 
 
It follows from the definition of the scalar product (V-28) that the scalar product of a state vector ψ  with itself cannot be 

negative. Indeed, by expressing the identity operator (V-42) in terms of the complete orthonormal set na  as  

∑=
n

nn aaÎ the scalar product can be reexpressed as  

 
 

2ˆ 0n n n
n n

a a aψ ψ ≡ ψ ψ = ψ ψ = ψ ≥∑ ∑I                                          (VI-14) 

 
 
As a consequence, the eigenvalues of the Hamiltonian of the harmonic oscillator can not be negative.  
Hence the reduction of the eigenvalue upon the application of a  to ˆ E′  must be terminated. This is only possible if there 
exists one eigenvector with the property 
 

0ˆ 0a E =                                                                                                                                            (VI-15) 
 
Because (VI-15) implies that we can generate no further eigenvectors (with even lower energy) by applying  since â

0ˆ 0 =Ean . The eigenvalue of this lowest-energy state, that is the ground state of the harmonic oscillator can be obtained 

from (VI-13) by taking  0' EE = , E  and, as a consequence of (VI-15), 0E=′ 0=′′E . The result is  
 

0
1
2

E = hω                                                                                                                                         (VI-16) 

 
The effect of applying to †â E′  can be derived by using the procedure that leads to (VI-12)   
 
 

( ) ( ) († †ˆ ˆH a E E a E′ ′= + ωh )ˆ ′                                                                                                        (VI-17) 

 
 
that is EaE ′=′′′ †ˆ  is also an eigenvector with an eigenvalue ω+′=′′′ hEE . By repeated operation with a  on ˆ

E′ , we find that Ean ′ˆ   is an eigenvector of with the eigenvalue Ĥ ω+′ hnE . Starting out from the ground state 

0E we can thus generate new eigenvectors  
 

†
0( )n

na E E=                                                                                                                                             (VI-18) 
 
with eigenvalues 
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1( )
2nE n= ω +h                                                                                                                                              (VI-19) 

 
Are these all possible eigenvalues and –vectors, or are there others? Repeated application of a  to any arbitrary ˆ E′ must 

lead us to 0E  otherwise we would end up with negative eigenvalues. The eigenvalue of  0E  must be ½  according 
to (VI-13). No matter which eigenvector we start out from, we always end up with the same set of eigenvalues, given by (VI-
19). Consequently, these eigenvalues must be unique. May there be different vectors 

ωh

0E obeying (VI-15)? If yes, we 

would have the case of degeneracy since all these eigenvectors must possess the eigenvalue ½ . In the ground state 
and hence all other energy eigenstates would be degenerate, there would have to be other operators commuting with, but 
independent of H  whose eigenvalues would suit for labelling the set of degenerate eigenvectors uniquely (as in the case of 
the electron moving in the Coulomb potential of the proton in the hydrogen atom the eigenvalues of the angular momentum 
operator are used to label the degenerate eigenstates of identical energy). In the lack of such an operator in the case of the 
current problem we conclude that the energy eigenvectors (VI-18 ) and eigenvalues (VI-19) are unique.  

ωh

ˆ

 
 

 
 
Fig. VI-2 

Eq. (VI-19) reveals that the minimum energy of the harmonic 
oscillator, reached in its ground state 0E , is ½ , and can 

only be increased in discrete steps, by the energy quantum 

ωh
ωh  

or its integer multiple (Fig. VI-2). The operator a  is called a 
destruction or annihilation operator since it destroys one 
quantum of energy. Its Hermitian conjugate, is called a 
creation operator since it creates a quantum of energy. 

ˆ

†â

 
At the oscillation frequencies of mechanical oscillators  is 
hardly measurable, hence the mechanical oscillators can – for all 
practical purposes – be well described by classical physics. 
However, at optical frequencies 

ωh

ωh  exceeds the work function 
of specific solids so that the energy quantum, referred to as a 
photon,  becomes easily detectable by utilizing the photoeffect, 
as we shall see later.   

 
Are the eigenvectors (VI-18) orthogonal? To answer this question, we calculate the scalar product of to different eigenvectors 
defined by (VI-18). By making use of the identity 
 
 

† † † 1 m † m-1 † m-1 † n-1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ( ) ( ) ( ) ( ) ( ) ( )n n n n na a a a n a a a a a a na a−= + ⇒ = +           (VI-20a,b) 
 
which can be derived by repeated application of the commutation relation (VI-8) (exercise), we find 
  
 

† 1
0 0 0ˆ ˆ ˆ ˆ( ) ( )m n m

m nE E E a a E n E a a E† n-1
0

−= =                                                   (VI-21) 
 
By repeated application of this rule we obtain  
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(VI-22) 
 
 
where we assumed that the ground state 0E  is normalized, 100 =EE . From (VI-22) we may conclude that the 
energy eigenstates (VI-18) are indeed orthogonal as expected for the eigenstates of a Hermitian operator and with the 
normalization  
 

†
0

1 ( )
!

n
nE a

n
= E                                                                                                                         (VI-23) 

 
 
form a complete orthonormal set, which we will use throughout the rest of this chapter.  
 
 
Number operator, number states 
 
 
With the help of (VI-20a) we find 
 
 

 1ˆ na E n E −= n                                                                                                                            (VI-24) 
 
 

†
1ˆ 1na E n E += + n                                                                                                                      (VI-25) 

 
 
from which it immediately follows that  
 
 

 
†ˆ ˆ na a E n E= n                                                                                                                               (VI-26) 

 
 
that is the operator   counts the number of energy quanta in the energy eigenstates and is therefore aa ˆˆ†

referred to as the number operator . Because the energy of the system in state nE  consists of n quanta, this state is 
also referred to as a number state.  
 
 
The matrix elements of the creation and destruction operators in the nE  representation can be written down immediately 

from (VI-24) and (VI-25) (and utilizing the orthonormality of nE ) 
 

,ˆmn m n m na E a E n −= = 1δ                                                                                                              (VI-27a) 
 
and  
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†a †
, 1ˆ 1mn m n m nE a E n += = + δ                                                                                                  (VI-27b) 

 
Furthermore, the matrix representation of the momentum and position operators read as 
 
 

( ), 1 , 1ˆ 1
2mn m n m n m n

mp E p E i n n+ −
ω

= = + δ − δ
h

                                       (VI-28) 

 
and  
 

( ), 1 , 1ˆ 1
2mn m n m n m nx E x E n n
m + −= = + δ + δ
ω
h

                     (VI-29) 

 
 

ncertainty products 

he operators of the momentum and position do not commute, hence these quantities can not be measured simultaneously 
ccurately. The uncertainty product ΔpΔx for the energy eigenstates of the harmonic oscillator can be calculated by using 

 
U
 
 
T
a
(exercise) 
 
 

( )22 ˆ( ) (2 1)
2n n

mp E p p E nω
Δ = − = +

h
                                                   (VI-30) 

 
and  

( )22 ˆ( ) (2 1)
2n nE x x E n
m

= − = +xΔ
ω
h

                                                                  (VI-31) 

 
 

here we utilized that – as a consequence of (VI-28) and (VI-29) – the expectation values  0ˆ == nn EpEpw and 

0ˆ == nn ExEx . This leads to the uncertainty product 
 

1( )
2

p x n= +h                                                                                                                                     (VI-32) 

 
According to the Heisenberg uncertainty principle 

Δ Δ

 

 
1
2

p x ≥ h                                                                                                                                           (VI-33) 

 
e see that the uncertainty product in the ground state of the harmonic oscillator reaches the smallest possible value 
lowed by Heisenberg’s uncertainty principle. The message (VI-32) conveys is that even in its state of lowest energy the 

Δ Δ
 

W
al
particle does not come to rest, which would imply Δp = 0 and Δx = 0. Instead, it oscillates with a residual energy ½ ωh
around the mean values 

 
0=p and 0=x .  
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The above treatment shows the power of the abstract Dirac formulation of quantum mechanics. Without 
the use of any particular re rese tation of the Hilbert space of the abstract state vectors, we have been able to derive all 
results relevant for physic

p n
al measurements by merely using the respective operators of the physical measurables and their 

mmutation relations. We have now developed the formalism required for quantum optics. 

et us confine a plane optical wave propagating in the z direction between two plane x-y surfaces of perfect conductivity. 
uch a plane-wave resonator, strictly speaking, would have to be bounded by two plane-parallel mirrors of infinite cross 

gth is many orders of magnitude smaller 
an a reasonable-sized mirror (say radius r ≈ 1 cm). Deviation of the enclosed resonator beam from a plane wave can be 

-

 

co
 
 
 
The quantization of the radiation field in a resonator, definition of the photon 
 
L
S
section. This is, of course, not feasible. However, at optical frequencies, the wavelen
th
quantified by the divergence angle r/λ≈θ , which for visible light (λ ≈ 0.5 μm) amounts to θ ≈ 50 microradians (Fig. VI
3). Over a propagation length of L ≈ 1 m this causes an increase of the beam radius by merely 0.5%. Hence the eigenmodes 
of such a plane-mirror resonator can be well approximated by plane waves of appropriate frequencies (eigenfrequencies of 
the resonator) thanks to the short wavelength of optical radiation. For quantization purposes, the plane-wave approximation
is also applicable to stable, Gaussia sonators, as long as the radial variation of the field is negligible within one 
wavelength: 

n-beam re
λ<<∂∂ /1/00 rF , which implies that the longitudinal field components are negligible in Eqs. (IV-42) and  

(IV-43).  
 
 

 
Fig. VI-3 
 
Since the electric field must fulfil ),( trE 0),(),0( ==== tLztz EE , the fields inside this plane-wave resonator of 

LA with its axis aligned along the z direction can be expanded as  volume V=
 
 

, ,
1

, 0
( , ) ( ) ( )t p t zσ σ= − ∑E r El l                                 

σ εl
                                                            (VI-34) 

                    
             

0 , ,
,

( , ) ( ) ( )t q tσ σ
σ

= μ ω∑B r Bl l l
l

z                                                                                           (VI-35) 

 
 
where the (standing-wave) field distributions of the  resonator mode with its electric field polarized along eσ are given by  l th
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, ,
2 2( ) sin ; ( ) coszz k z z
V Vσ σ σ σ= =E e B e el l l k z× l                      (VI-36) 

nd 

 

 
a
 

2 ; ,k x y
L
π

= σ =l l                                                                                                       

ith being a positive integer and eσ denoting the unit vector pointing along the σ direction. Here is the 

magnetic permeability of vacuum an

                      (VI-37) 

 
 

 l  2
00 /1 cε=μw

00/ με=ω ll k .  The modes are orthogonal, that is – after proper normalizationd  – 

     

,γ

                                                                                                                                                  (VI-38) 

,γδ

 
 (VI-35 nto the 

 

obey  
  
 

 
3

V
d r⋅ = δ δ∫ E El l  

           

, , ,m mσ γ σ

3
, , ,m m

V
d rσ γ σ⋅ = δBl l  ∫ B

 

Eqs. (VI-34)-(VI-37) represent the normal mode expansion of the resonator. Substituting (VI-34) and ) i first and 
second Maxwell’s equations, (IV-1) and (IV-2), we obtain (exercise)   

,
,

dq
p

dt
σ

σ =
l

l                                                                                                                                        (VI-39) 

 

2 ,
,

dp
 q

dt
σ

σω = − l
l l                                                                                                                             (VI-40) 

 
 

hich implies  
 
w

2
2,

,2 0
d q

q
dt

σ
σ+ω =l

l l                                                                                                                           (VI-41) 

tifies  as the oscillation frequency of the  mode.  
 

 

 
q. (VI-41) iden lω l thE

The total electromagnetic energy stored in the cavity   
 

2 2 31 1H d r
⎛ ⎞

= ε +⎜ ⎟∫ E B                             0field                                                                         (VI-42) 
02 V μ⎝ ⎠
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which is equivalent to the Hamiltonian of the system, can be expressed in terms of the dynamical variables and 

by substituting (VI-34) and (VI-35) into (VI-42
 
 

)(, tp σl

)(, tq σl ) and using (VI-38) 

  

( )
,

2 2 2
, ,2fieldH p q

σ

σ σ= +ω∑
l

l l l                                                                                                  (VI-43
1

           ) 

Comparison of (VI-42) with (VI-5) reveals that the electromagnetic field in the resonator behaves mathematically like an 
ensemble of independent harmonic oscillators.
conjugate momentum and position variables, which can be verified by deriving from Hamilton’s equations of motion  

 
 

 The dynamical variables  )(, tp σl and )(, tq σl constitute the canonically 

 
 

2
, , , ,

, ,
;H Hq p p q

p qσ σ σ σ
σ σ

∂ ∂
= = =− = −ω
∂ ∂l l l

l l

& &                                              (VI-4l l       4) 

The same equations which we previously obtained from Maxwell’s equations for and . 
We can thus proceed with the quantization precisely in the same manner as we did i
defining the creation and annihilation operators  

 
 

)(, tp σl )(, tq σl

n the case of the harmonic oscillator, by 

 
 

( )† 1ˆ ˆ ˆa q i p= ω −                                                                                                        (VI-45) , , ,
2

σ σ σ
ω

l l l l

lh
 
 

(, ,
1ˆ ˆ

2
a qσ σ= ω +

ω
l l l

lh
),ˆi p σl

with the commutator relations  
 

m γδ δl                   (VI-47) 

verting (V-45) and (VI-46) yields  
 

                                                                                                       (VI-46) 

 
 

† † †
, , , , , , , ,ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0 ; [ , ] 0 ; [ , ]m m ma a a a a aσ γ σ γ σ γ σ= = =l l l

 
 
 
In

( )†
, ,ˆ ˆ

2 ,ˆp i a aσ σ σ
ω

= −l
l l l

h
                                                                                                                (VI-48) 

 
nd  a
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( )†
, , ,ˆ ˆ

2
a aσ σ σ= +

ωl l l
l

h
                                                                                                                  (VI-49) 

 
 
The operators of the electric and magnetic fields of the resonator in the plane-wave approximation can now be obtained by 

bstituting (VI-48) and (VI-49) into (VI-34),(VI-35)    

q̂

su
 
 

( )†
, ,

0,

ˆ ˆ ˆ sini a a
Vσ σ σ

σ
k z= − −

ε∑ e l
l l l

l

                                                                             (VI-50) 

 
 

ωhE

( )†
, ,

0,

ˆ ˆ ˆ( ) cosz k a a
Vσ σ

σ

= × +
ε ω∑ k zσe e l l l l

ll

h
                                                       (VI-51) 

 
 
The summation must be extended to the transverse mode indices if more than one transverse mode is oscillating. The 

amilton operator of the field stored in the cavity can also be expressed in terms o  and  by substituting (VI-48) and 

B

H f â †â
(VI-49) into (VI-43)  
 
 

†
field , ,

,

1ˆ ˆ ˆ
2

H a aσ σ
σ

⎛ ⎞= ω +⎜ ⎟
⎝ ⎠

∑ l l l
l

h                                                                                                        (VI-52) 

 
 
If the resonator also contains an atomic system (e.g. gain medium in a laser) interacting with the modes of the resonator, the 

tal Hamiltonian of the system can be written as 

ˆ                                                                             (VI-53) 

 
he state vector of the atom-field system can be expanded in terms of the eigenstates of  :    

to
 
 
ˆ ˆ ˆ ˆH H= + = +total field electron field 0 intĤ H+H H

 

T total int field 0
ˆ ˆ ˆ ˆH H H H− = +

 

,
jm jm

j m
cΦ = φ∑         ;           1 2 3, , ,....., ,.....jm in n n n uφ = m                                (VI-54) 

 
 
where, the index i comprises all mode indices (including the longitudinal mode index the transverse mode indices if apply 
nd the polarization index σ), the index j comprises the photon numbers in all mode

l , 
s and mua is the mth eigenstate of the 

Hamiltonian of the atom in the absence of fields, 0Ĥ . Application of the field and (unperturbed) atomic Hamiltonian to this 
state vector results in  
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field
1ˆ
2jm i i

i
H n

⎧ ⎫⎛ ⎞φ = ω + φ⎨ ⎬⎜ ⎟
⎝ ⎠⎩ ⎭

∑h jm         ;      0
ˆ

jm m jmH Eφ = φ               (VI-55) 

 
 
indicating that the field energy stored in the ith mode of the resonator is equal to )2/1( +ω ii nh , i.e. to the zero-field 
energy plus an integer multiple of the elementary excitation of this resonator mode, which has been referred to as a photon. 
The Hamiltonian (VI-53) together with (V-66), (V-67), and (V-68) provides a full quantum description of light-matter interaction 
in an optical resonator.  
 
 
 
Travelling-wave quantization 
 
Radiation may interact with matter outside a resonator. In this case, the field can not be expressed in terms harmonic 
oscillators and the previous approach does not work. Rather, we expand the electromagnetic field in terms of plane waves, 
which mathematically constitutes a 3-dimensional Fourier expansion (similar to the 2D expansion used in Fourier optics, see. 
Chapter III). As it is more convenient to handle series rather than integral representations, we introduce the so-called box 
normalization. In this concept, space is limited to an arbitrary but usually large volume surrounding the region of interest, for 
example an atomic system and we assume that the field outside is a periodic repetition of the field inside the volume. The 
use of a square box with sides of equal length   
 
 
0 ; 0 ; 0x L y L z≤ ≤ ≤ ≤ ≤ ≤ L                                                                                     (VI-56) 
 
 
makes it easy to impose this periodic boundary condition. The procedure outlined above is the prescription of a three 
dimensional Fourier series expansion.  
 
Following this procedure we can expand the vector potential A(r,t) into a Fourier series, the components of which are 
solution of  
 

∇2 
2

2 2
1( , ) ( , ) 0r t r t

c t
∂

−
∂

A A =                                                                                                        (VI-57) 

 
 
and can be formally regarded as harmonic oscillators of discrete eigenfrequencies, which are defined  by the periodic 
boundary conditions.  Eq. (VI-58) is obtained here by using the Coulomb gauge  
 
∇                                                                                                                                             (VI-58) 0),( =trA
 
and assuming a time independent scalar potential 
 

0φ =                                                                                                                                                    (VI-59) 
 
Under these circumstances (IV-24b) simplifies to (VI-57) in the absence of free currents and we have 
 

 B=∇ ;
t
∂

× = −
∂

A E A                                                                                            (VI-60) 

 
implying transverse radiation fields (an assumption also implicit in our procedure for resonator mode quantization).  The 
quantization of general the electromagnetic fields (i.e. those having field components pointing along the wave vector, termed 
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longitudinal field components) should be done in the Lorentz gauge, which is a rather complicated procedure treated in a few 
books on quantum electrodynamics2.  
For most problems in quantum optics, it is a good approximation to quantize only the transverse field components obeying 
(VI-58) and (VI-60) and treat the time-independent scalar potential and its resultant electric field (such as that binding 
electrons to the nucleus) as a classical, unquantized field incorporated in  of (VI-53).  Quantization of the total field 
makes this force appear as a result of an exchange of virtual “longitudinal” photons between these particles and gives rise to 
small (but well measurable) effects such as e.g. the Lamb shift, which can not be described by our simplified treatment.  

0Ĥ

 
The formal analogy of the terms of the Fourier-series expansion of A(r,t) to the description of harmonic oscillators allows 
again the introduction of the creation and annihilation operators, in terms of which the operator of the vector potential of a 
transverse radiation field can be expanded as3     
 
 

( †
, ,

0,

ˆ ˆ ˆ
2

i

kk
a e a e

V
−

σ σ
σ

=
ε ω∑ kr kr

k kA e h ),
i

σ+ k                                                                 (VI-61) 

where 
 

( ) ; ;x x y y z z k
2 n n n c
L
π

= + + ω = σk e e e k 1,2=                                           (VI-62) 

 
with nx, ny and nz being integers. The Hamiltonian takes the usual form  
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The creation and annihilation operators commute according to (VI-45). From Eq. (VI-61) we can derive the electric field and 
magnetic field operators by using (VI-60): 
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The temporal derivatives of the creation and annihilation operators can be calculated by applying the   operator equation of 
motion (V-45) and using the commutator relations (VI-11) (exercise) 
 

†
, †

,
ˆ 1 ˆˆ[ , ] k
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a H i a
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σ

σ= = ωk
k

h
†
,ˆ σk

                                                

                                                                                                    (VI-66) 

 

 
2 A. I. Akhiezer and V. B. Berestetskii, Quantum Electrodynamics (Interscience Publishers, 1965) 
W. Heitler, The Quantum Theory of Radiation 3rd Ed. (Oxford, 1957)  
3 D. Marcuse, Principles of Quantum Electronics, Academic Press, Inc., 1980 
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The substitution of these expressions into (VI-64) yields 
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iki a e
V

−
σ σ

ω
= − −

ε∑ kr kr
k k kE e h )ia eσ                                                                (VI-67) 

 
Equations (VI-65) and (VI-67) specify the field operators in the Schrödinger picture, where the state vectors evolve and the 
operators are “frozen” in time. In quantum optics, it is often more convenient to work in the Heisenberg picture, where the 
state vectors are independent of time, but the operators evolve according to (VI-66). Eqs. (VI-66) can be readily integrated to 
yield in the Heisenberg picture 
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† †
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Substitution of these time dependent operators into (VI-64) and (VI-65) leads to the field operators in the Heisenberg picture 
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pontaneous atomic transitions 

 transition rate of 

henomenologically. With the field quantized, the rate of spontaneous emission can now be readily calculated.  

Let u n σ red in an excited state 

              (VI-

7
 
 
 
S
 
 
In the framework of the semiclassical theory of light-matter interactions we have been able to calculate the
atomic transitions induced by the field. However the rate of spontaneous transitions had to be introduced 
p
 

s assume that a plane wave propagating along k with a polarizatio  interacts with atoms prepa

2u  with energy E2 resonantly to induce a transition to a lower state 1u  with energy E1 such that 

.  

 

kE ω≈ω=− hh 012E
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                         Fig. VI-4 
 
As Fermi’s golden rule for the transition rate 
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initial final fi final initial( )
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E                                                                                          (VI-71) 

 
dictates energy conservation, the mode (k,σ) must gain a quantum upon the atomic transition, i.e. the initial and final states 
of the field-atom system are, as depicted in Fig. (VI-4):  
 
 

, 2 , 1;i fn u n uσ σφ = φ = +k k 1 2) 

he transition rate is driven by the interaction Hamiltonian, which can be written as   

                                                                                       (VI-7
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 in Fermi’s golden rule stands for the matrix element of 
 

Ĥ ′ or †ˆ( )H ′fi′H for and upward or downward transition, respectively 
(as en

r                                                                                                                                    (VI-74) 

 it is apparent from Eq. V-102 in the derivation of the gold  rule). The interaction Hamiltonian describing the interaction 
between the (k,σ) mode of the field and the atoms 
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ubstituting (VI-69) into (VI-74) and comparing the latter with (VI-73) yields in the electric dipole approximation [kr ≈0 in 
I-69)]  
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hich yields the transition matrix element relevant for downward transition   
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here 21 ueu r=μw is the electric dipole matrix element, see Eq. (V-111), and we utilized   

†
, , 1n nσ σ+ = +k k , which follows from Eq. (VI-25). With (VI-76) the transitio, ,ˆ1 a nσ σk k n rate induced by one mode 

of the radiation field is given by 
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re the transition rate induced by the field and the spontaneous transition rate, respectively. It can be readily shown by the 
me approach (exercise) that for an upward transition the spontaneous transition rate is zero, that is there is no 

l 

g the replacements    ;  

a
sa
spontaneous upward transition.   
 
The induced transition rate obtained in (VI-78) can be shown to be equivalent to (V-116) derived within the semiclassica
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implied by ensemble averaging for randomly oriented atoms (exercise).  
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The spontaneous emission rate can be calculated by summing (VI-79) over all modes of the field4   
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Summing this for all possible downward transitions from an arbitrary initial eigenstate  
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which has been introduced phenomenologically in the rate-equation modelling of light-matter interactions. 

                                                

 
 

 
4 The derivation can be found e.g. in A. Yariv, Quantum Electronics, 3d Edition, Wiley & Sons, 1989, p. 166.   
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