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Polarization response of matter: quantum theory of the constitutive law   
 
 
Density-matrix approach to the description of the interaction of a light wave with an atomic ensemble 
 
In the previous chapter, we have used time-dependent perturbation theory for deriving the probability of atoms undergoing 
transitions from one eigenstate of their Hamiltonian into another. This formalism led to Fermi’s golden rule and the atomic 
rate equations, the most frequently used formalism for the description of light-induced atomic transitions and lasers. 
However, the formalism leaves open several questions that are of crucial importance for the operation of lasers and light-
matter interactions: 
 

• Where does the broadening of atomic transitions originate from? 
 
• What are the limits of the rate-equation approximation and what is beyond? 

 
• Is light amplification resulting from stimulated emission a coherent process?  

 
 
The quantum theory of the polarization response of an atomic system to a light field connects polarization with the electric 
field (constitutive law) and – by doing so – provides answers to the above questions in a natural manner. The microscopic 
theory of the constitutive law derives from the quantum-mechanical motion of electrons 
  

• the linear electric susceptibility (and hence refractive index)  
as well as  

• the nonlinear susceptibilities,  
 
which were input parameters in previous models of light phenomena. The microscopic theory also establishes the limits of 
validity of the perturbative expansion of the constitutive law and relates the polarization to the electric field beyond the limits 
of these approximation (non-perturbative or strong-field regime).   
 
 

 
 
Fig. V-18 

The quantum theory of the light-induced polarization 
of an atomic system approach is based on the 
density matrix formalism developed in Chapter V-1. 
Again, we assume a near-resonant interaction 
between the incident light field and the atomic 
system 
 
 

0 2 1( ) /E Eω≈ω = − h  
 
 
so that other non-resonant levels (shown by dashed 
lines in Fig. V-18 play no role in the interaction 
except in determining the equilibrium populations 

 and N . eN1
e
2

 
 
As a result, the density matrix describing the state of the atomic ensemble is reduced to a 2x2 matrix 
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⎟                                                                                                                        (V-150) 

 
 
which is represented here in terms of the eigenfunctions 1u  and 2u of the unperturbed Hamiltonian  of the atoms. 
The Hamiltonian of the atoms interacting with the incident light field is again written as 

0Ĥ

 

   ;          0
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                                          (V-151) 

 
which in the same representation takes the matrix form 
 
 

'
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ˆ E H
H
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                                                                                                                     (V-152) 

 
 
where  
 

'
12 0 1 2 0 12H u e u= − = −E r E μ    ;     

 
 

' '
21 0 2 1 0 21 0 12 12H u e u∗ ∗ ∗ ∗= − = − = − =E r E μ E μ H ∗

                               (V-153) 
 
 
and we have assumed the states 1u  and 2u to be of definite parity1, which implies 
 

11 22 0= =μ μ                                                                                                                              (V-154) 
 

as a consequence of 
3( ) ( )km k mu e u d∗= ∫μ r r r r .  

 
 
For the time being we assume the field to be linearly polarized along the x axis and the atoms to be fully aligned with the 
field. Without the loss of generality we assume the electric field amplitude Ex(t) to be real and choose the phases of the 
eigenfunctions 1u  and 2u such that  
 

3
21 12 1 2( ) ( )u e x u d r∗μ = μ = μ = ∫ r r                                                                              (V-155) 

 
With these simplifications the Hamiltonian takes the form 
 
 

                                                 
1 The eigenfunction of the Hamilton operator with a potential V(r) that satisfies V(-r)= V(r) can be shown to obey either uk(-r)= uk(r) or uk(-
r)= -uk(r), that is to possess even or odd parity, respectively. 
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What we are interested in is the time evolution of the polarization density of the atomic ensemble  
 

( )xP t N= μ                                                                                                                                             (V-157) 
 
under the influence of the field. Here N is the density of atoms and the ensemble average of the atomic dipole moment is – 
according to (V-83) – given by 
 
 

2
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, 1

( ) ( )mn nm
m n

∗

=

μ = ρ μ = μ ρ +ρ = μ ρ +ρ∑                                                  (V-158) 

 
 
where we made use of Eqs. (V-154) and (V-155). The temporal evolution of Px(t) is determined by those of the components 
of the density matrix, which – in turn – is governed by the equation of motion  
 

ˆ ˆ ˆ[ , ]d i H
dt
ρ
= − ρ

h
                                                                                                                             (V-89) 

 
 
Substituting (V-150), (V-152) and (V-156) into (V-89) yields 
 
 

 

' '12
12 1 12 12 22 11 12 12 2

0 12 11 22

ˆ ˆˆ ˆ( ) ( )

( ) ( )x

d i iH H E H H E
dt

i i E t

ρ
= ρ−ρ = − ρ + ρ −ρ −ρ

μ
= ω ρ − ρ −ρ

h h

h

=
            (V-159) 
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22
22 12 12

ˆ ˆˆ ˆ( ) ( ) ( )x
d i H H i E t

dt
∗ρ μ

= − ρ−ρ = ρ −ρ
h h

                                                            (V-161) 

 

where we utilized 21 12
∗ρ = ρ . 

 
 
Energy relaxation and dephasing  
 
By definition, is the probability of finding an atom in state kkρ ku , hence the population density of level 1 and 2 are given 
by  
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 1 11 2 22 11 22; ; ( )N N N N N N= ρ = ρ Δ = ρ −ρ                                                               (V-162) 
 
 
According to (V-127), with the interacting field E(t) “turned off”, these populations relax towards their equilibrium values due 
to spontaneous emission and inelastic collisions   
 
 

1 1 1 2 2

1 2
;

e edN N N dN N N
dt dt

− −
= − = −

τ τ
2                                                                        (V-163) 

 
 
So that for the corresponding components of the density matrix in the absence of interacting radiation we can write 
 
 

11 11 11

1

ed
dt
ρ ρ −ρ

= −
τ

                                                                                                                 (V-164) 

 
 

22 22 22

2

ed
dt
ρ ρ −ρ

= −
τ

                                                                                                                (V-165) 

 
 
The diagonal elements of the density matrix hence decay with the energy decay time constants kτ , which are therefore also 
referred to as the diagonal or longitudinal relaxation time constants.  
 
 
Once the interacting field E(t) is switched off, the off-diagonal elements of the density matrix also decay, but for a completely 
different reason. By definition (V-78) 
  
 

12 2 1 2 1
ic c c c e∗ρ = = − Δϕ

                                                                                                 (V-166) 
 
 
where is the phase difference between the two components of the wavefunction in its expansion in terms of  21 ϕ−ϕ=ϕΔ

1u  and 2u . After the external perturbation leading to a non-zero value of 12ρ  ceases, the ensemble average of this 
phase term approaches zero with a decay time constant T2  
 
 

12 12
0 12

2

d i
dt T
ρ ρ

= ω ρ −                                                                                                              (V-167) 

 
 
as the phase coherence of the wave functions of the individual atoms in the ensemble is gradually lost due to effects 
perturbing the wave function. T2 is called the dephasing time. 
 
The highest-frequency perturbations are in most cases elastic collisions, which cause only a random shift of , occur at a 
rate of  1/τph without affecting the magnitude of  c1 and c2 in Eq. (V-166) and hence the level populations. The phase 
coherence also decays due to population decay so that  

ϕΔ

 - 153 - 



V. Semiclassical theory of light-matter interactions    polarization response of matter: quantum theory of the constitutive law 
 

 
     

2 1 2 p

1 1 1 1 1 1
2 2phT
⎛ ⎞

h

Γ
= + + = +⎜ ⎟τ τ τ τ⎝ ⎠

                                                                           (V-168) 

 
 
 
As Eqs. (V-157) and (V-158) imply  
 
 

12 12 12( ) ( ) 2 Re[xP t N N ]∗= μ ρ +ρ = μ ρ                                                                               (V-169) 
 
 
dephasing described by (V-167) and (V-168) gives rise to a clearly observable phenomenon: the loss of quantum mechanical 
coherence in an atomic ensemble leads to the decay of coherent macroscopic polarization with a decay rate 1/T2  
 
 

2/
0 0( ) cost T

x xP t P e t−= ω                                                                                                                (V-170) 
 
 
Figure V-19 illustrates the decay of the coherent macroscopic polarisation resulting from elastic collisions in a collection of 
oscillating atomic dipoles  
 

 
 
Fig. V-19 

In this (hypothetical) case:  
 
 

ph/
0( ) t

x xP t P e− τ=         (V-171) 
 
 
In the hypothetical case of pure population 
(energy) decay, the intensity of 
spontaneously emitted radiation, which is 
proportional to , decays with the decay 
constant Γ,  see Eq. (V-168), hence 

2
xP

 
 

/ 2
0( ) t

x xP t P e−Γ=          (V-172) 
 
 
Comparison of Eqs. (V-171) and  
(V-172) sheds light on the origin  
of the factor ½ in Eq. (V-168).  
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The density matrix equations of motion for resonant light-atom interaction 
 
 
With the effect of the interacting field introduced from (V-159), (V-160) and (V-161) into Eqs. (V-164), (V-165) and (V-167), 
we obtain the density matrix equations of motion for resonant light-atom interaction   
 
 

11 11 11
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22 22 22
12 12

2
( ) ( )

e

x
d i E t

dt
∗ρ μ ρ −ρ

= ρ −ρ −
τh
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ρ
                                                     (V-173c) 

 
and for the other off-diagonal term 
 

21 12
∗ρ = ρ                                                                                                                                      (V-173d) 

 
 
 
 
The classical electron oscillator model, the resonant dipole equation  
 
 
Adding its complex conjugate to Eq. (V-173c), multiplying the new equation with μN  and using (V-169) we obtain 
 
 

0
2

x xdP Pi
dt T

= ω α−                                                                                                                  (V-174a) 

 
 
In a similar way, (V-173c) – (V-173c)* and its multiplication with μN yields 
 
 

2

0
2

2
x

d i P i N E
dt T
α μ
= ω − Δ −

h
x

α
                                                                                  (V-174b) 

 
where  . Differentiation of (V-174a) and substitution of )( 1212

∗ρ−ρμ=α N α  and dtd /α from (V-174a) and (V-174b) 
leads to  
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Multiplying (V-173a,b) with N , and substituting α  from (V-174a) results in   
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                                                                     (V-176) 

 
 
 
and a similar equation for N2. Since  0 1/Tω >> , these equations simplify to  
 
 
  
 

2
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2
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e

x
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= −

ω τh
                                                                (V-179) 

 
 
 
where the coupling constant  
 
 

2 2
02 2or

3
K Kω μ ω μ
= =

h h
0                                                                                            (V-180a,b) 

 
 
for fully-oriented or randomly-oriented (see Eq. V-113) atoms, respectively. 
 
These equations completely describe the measurable consequences of the interaction of light with an ensemble of resonant 
atoms: the influence of the field on the (quantum) state of the atoms (Eqs. V-178 and V-179) and the back action of the 
interacting atoms in form of a polarization response (Eq. V-177 or V-180) to be introduced in Maxwell’s equations. Eq. (V-
177) has been termed the Resonant Dipole Equation by A. E. Siegman and served as the basis for a thorough treatment of 
laser physics in his excellent monograph: Lasers (University Science Books, Mill Valley, CA, 1986). 
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Eq. (V-177) reveals that the atom responds to the radiation field resonant with its quantum transition, 
very much like a damped classical electron oscillator  (Fig. V-20).   h/)( 120 EE −=ω≈ω

 
 
 
 
 
 

 
 
 
     Fig. V-20 

As a matter of fact, the polarization 
can be thought of as the result of the 

displacement of the electron cloud 
)(tPx

 
( ) ( )xP t Nex t= −  

 
which with the motion of a classical 
oscillator  
 

0 2 0( ) exp( / )x t x t T i t′= − − ω  
 
of eigenfrequency  
 

2 2
0 0 21/T′ 0ω = ω − ≈ ω  

 
and damping time constant T2 yields a 
solution of Eq. (V-177) in the absence of a 
driving field Ex(t).  
The coupling between the classical 
oscillator and the driving electric field is 
determined by the dipole matrix element μ 
and the population difference ΔN. 
 

 
 
 
Atomic susceptibility  
 
 
In what follows, we shall be concerned with the response of the atomic ensemble 
 
  

1( ) ( ) . .
2

i t
xP t P t e c c− ω= +                                                                                                                  (V-181) 

 
to a (near-)resonant light field 
 
 

1( ) ( ) . .
2

i t
xE t E t e c c− ω= +                                                                                                                 (V-182) 

 
 
where P(t) and E(t) are complex, generally time-dependent amplitudes.  
 
Let us first scrutinize the stationary response of the atomic system for  
 
 

0( )E t E=                                                                                                                                               (V-183) 
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Using the definition (IV-66) of the complex (frequency-dependent) susceptibility χ′′+χ′=χ i , the steady-state solution to 
(V-177) can be written in the form 
 
  

0 0 0 0 0( ) Re( ) ( cos sin )i t
xP t E e E t t− ω ′ ′′= ε χ = ε χ ω + ε χ ω                                          (V-184) 

 
 
where – for randomly-oriented atoms – the atomic susceptibility  (Fig. V-21) is given by 
 
 

 
 
 
 
 

 
Fig. V-21 

 
2
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              (V-185) 
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(V-186) 
                                                                     
  and 
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0
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ω−ω = =
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Δω π
=
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(V-187) 
 
 
normalized Lorentzian lineshape function, with a line width 
(full width at half maximum)  

20 /2 T=ωΔ  
 
and ΔN is the steady-state population difference.   
 

 
 
 
Rederivation of the rate equations  
                                                                                                                                                                                                                                      
In order to determine ΔN  we substitute  
 
 

0
1 1( )
2 2

i t i t
xE t E e E e− ω ∗ ω= + 0                                                                                                              (V-188) 

 
and  
 

 0 0 0 0
1 1( )
2 2

i t i t
xP t E e E e− ω ∗= ε χ + ε χ ω

                                                                                          (V-189) 
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into (V-178) and (V-179) and obtain   
 
 

1
12 1 2

1
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dt

−
= − − −

τ
1 1                                                                                                      (V-190) 

 
 

 2
12 1 2

2
( )

edN N NW N N
dt

−
= − −

τ
2 2                                                                                                       (V-191) 

 
 
where the transition rate is given by  
 
 

22
0

12 02 ( )
6

E
W g

μπ
= ω

h
−ω                                                                                                          (V-192) 

 
 
Quantum mechanical origin of homogeneous line broadening 
 
 
In (V-190) and (V-191) we recognize the rate equations (V-129a-b) derived previously from solving Schrödinger’s equation 
(perturbatively) for an individual atom. The lineshape )( 0ω−ωg introduced in (V-115) in an ad hoc manner is now given by 
(V-187). Substitution of (V-187) into (V-121) results in the explicit mathematical expression of the transition cross section 
between nondegenerate levels in terms of properties of the individual atoms (dipole matrix element μ) and the ensemble 
(relaxation times τ1, τ2 and T2)  
 
 

2
02

2 2 2 2
0 0 2 0 2

1( )
3 1 ( ) 1 ( )

T
nc T T

σμ ω
σ ω = =

ε + ω−ω + ω−ωh
                                              (V-193) 

 
   
One of the major benefits of the density matrix approach is that it sheds light on the origin of homogeneous line broadening 
and delivers the explicit expression of the transition cross section of a homogeneously-broadened transition.  
 
 
Connection between the atomic susceptibility and transition cross-section 
 
The atomic susceptibility for a transition between nondegenerate levels can now be reexpressed in terms of  by 
comparing (V-185) and (V-186) with (V-193) 

)(ωσ

 
  

( ) ( )nc N′′χ ω = σ ω Δ
ω

                                                                                                                       (V-185’) 

 
 

0 2( ) ( ) ( )nc T′χ ω = ω −ω σ ω Δω N                                                                                            (V-186’) 
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In the steady state the left-hand side and hence the right-hand side of Eqs. (V-190) and (V-191) are zero. Subtracting 
(V-191) from (V-190) leads to   
 
 

 
12 1 21 ( ) 1 / ( )

e e

s

N NN
W
Δ Δ

Δ = =
+ τ + τ + ωI I

                                                                                          (V-194) 

 
 
where  
 
 

1 2
( )

( )( )
ω

ω =
σ ω τ + τ

h
sI                                                                                                                      (V-195) 

 
 
 
is the saturation intensity introduced previously for the limiting case of τ1 → 0 by Eq. (V-143).  
 
 
Nonlinear constitutive law, power broadening 
 
Substitution of Eqs. (V-195) and (V-194) into (V-185’) and (V-186’) yields (exercise)  
 
 
 

0
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                                                                   (V-185’’) 

 
 
 

 0 0 2
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0 2
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( )( )
1 ( )

( )

enc N T

T

σ Δ ω −ω′χ ω =
ω + + ω−ω

ωs

I
I

                                                                   (V-186’’) 

 
 
The consequence of saturation implying a decrease of the population difference ΔN with increasing field intensity is that the 
susceptibility becomes field dependent, resulting in a nonlinear constitutive law (V-184). This nonlinearity implies a 
decreasing susceptibility χ and a broadening of the Lorentzian lineshape function with increasing field intensity. The 
broadening with respect to the zero-field bandwidth Δω0 = 2/T2 amounts to 
 
 

sat 0
0

1
( )

Δω =Δω +
ωs

I
I

                                                                                                               (V-196) 

 
 
This phenomenon is called power broadening. 
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Range of validity of the atomic susceptibility and the rate-equation approximation 
 
 
The steady-state solution to the density matrix equations allowed us to derive the atomic susceptibility and the rate equations 
for level populations. Now we address the important question: what conditions have to be met in order for the 
susceptibility properly accounts for the atoms’ response to the interacting field and the rate equations properly 
describe population dynamics between atomic levels?   
 
 

 

          Fig. V-22 

To answer this question, we first scrutinize the transient response of the 
atoms to a field oscillating at ω0 that is turned on abruptly at t = 0 
 
                                                                                                                             

0
0

1 . . 02( )
0 0

i t

x
E e c c t

E t
t
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                     (V-197) 

 
Solution of (V-177) under the assumption of ΔN  constant in time  
yields the transient response of atomic polarization  
 

02

02

/2
0

0
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e E e c c
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.Δ ⎡ ⎤≈ − +⎣ ⎦ω

⎡ ⎤=ε χ ω − +⎣ ⎦

=
 

 
 
in the form of a forced sinusoidal oscillation the amplitude of which  
builds up to a steady-state value with a time constant T2 (Fig. V-22).  

 (V-198) 

 
 
 
From this transient response we may conclude that the envelope of the atomic polarization 

will follow any amplitude or phase variation in the (complex) envelope of the driving 
electric field E according to P

)(tP

0

)]exp()(Re[)( titPtPx ω−=
)(Re[)( tEtx =

)(tE
)]exp( tiω− )()( tEt χε= with a transient time delay that is .  2T≈

 
The quasi-static approximation  

0( ) ( )P t E t= ε χ  
 

of the atomic polarization response and its direct implication: the rate-equation approximation (Eqs. V-190, V-191) are 
therefore valid approximations if  
 

(1) the driving electric field amplitude )(tE is nearly constant over the time scale of T  2
 

2

1 1d E
dt E T

<<                                                                                                       (V-199)  

and 
(2) the population difference )(tNΔ is nearly constant over the time scale of 2T  
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2

1 1d N
dt N T
Δ

<<
Δ

                                                                                                (V-200)  

 
which, by subtraction of (V-191) from (V-190), can be reformulated as  
 

12
2

1W
T

σ
= <<

ωh
I                                                                                               (V-201)  

 
that is, if the bandwidth of the interacting light field is small compared with the atomic linewidth and its 

strength is sufficiently small to ensure  (note that the latter condition also depends on the carrier 
frequency ω   because of . 

0ωΔ

212 /1 TW <<
)(1212 ω=WW

 
 
Is saturation feasible within the range of validity of the rate-equation approach? Only if condition #(2) can be 
reconciled with that of saturation: , i.e. 1)( 2112 >>τ+τW
 
 

1 2

1 1or
T

σ
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τ τ ωh
I

2

1

2

                                                                                (V-202) 

 
 
This condition for saturation within the rate-equation approximation can be satisfied only if  
 

                                                                                                      (V-203) 1 2or Tτ τ >>
 
is fulfilled, which is the case in virtually all practically useful laser materials: the energy relaxation rates are almost always 
slow as compared to the dephasing rate. 
 
 
 
Large-signal response: Rabi flopping 
 
 
Let us now examine what happens if the interacting field is so strong that (V-201) is violated, that is  
 
 

Iσ ω
>

ωh 2

( ) 1
T

 

 
 
Clearly, this situation can only be accounted for by the original density matrix equations of motion (Eqs. V-177,178,179), 
because one of the conditions for the validity of the rate equations (V-178,179) are not met. 
 
To  shed light on the strong-signal behaviour of resonantly driven atoms at the expense of a minimum of maths, we shall 
make a few simplifying, though in terms of the essence of the underlying physics – not limiting, assumptions. We assume an 
on-resonance applied driving field )]exp()(Re[)( 0titEtEx ω−=

)]exp()(Re[)( 0titiPtPx

 with a real envelope function and write the 

polarization response in the form 

)(tE
ω−= ,  which will ensure  to be a real function, too. 

Substituting these expressions into (V-177) we obtain for the polarization amplitude P    
)(tP

)(t
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Which, by using the slowly-varying amplitude approximation in time (see IV-133), and neglecting 1/T2 with respect to ω0, 
simplifies to  
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( ) 1 ( ) ( ) ( )
2

dP t KP t N t E t
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+ = Δ
ω

                                                                     (V-205) 

 
 
We also need an equation for the population difference ΔN, which can be obtained from (V-178) and (V-179). To simplify the 
analysis, we assume the two energy relaxation time constants to be equal  
 

                                                                                                                          (V-206) 1 2 Tτ = τ ≡ 1
 
which, by subtraction of (V-179) from (V-178), leads to  
 
 

0

1

( )( ) 1 ( ) ( )N t Nd N t E t P t
dt T

Δ −ΔΔ
+ = −

h
                                                   (V-207) 

 
where ΔN0 = ΔNe and we neglected quantities oscillating at 2ω0 because they average out to zero on a time scale longer 
than the optical cycle.  
 
 
We now solve Eqs (V-205) and (V-207) for the simple case of a constant driving signal abruptly turned on at t = 0 with an 
amplitude E0, in which case they become a simple pair of coupled linear first-order differential equations. By substituting one 
of them into the other results in second-order equations for the polarization amplitude and the population difference 
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where 
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                 (V-210) 

 
 
 

is the Rabi frequency, which is proportional to the driving field strength E0 and the dipole matrix element μ. 
 
 

 

 
 
 
 Fig. V-23 

 
Let us now suppose that Rabi frequency is small 
compared to ω0 (so that the slowly-varying amplitude 
approximation remains valid) but large compared to the 
energy and phase relaxation rates 1/T1 and 1/T2 either 
because E0 is extremely high or because the relaxation 
times are very long. Equations (V-208) and (V-209) then 
reduce to 
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and 
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which have the elementary solutions  
 
 0( ) cos RN t N tΔ = Δ ω                       (V-213) 
 
and 
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Shown in Fig. V-23 for two different values of E0.  
 

                (V-214)

 
 
 
It is apparent from these solutions, which are valid on a time scale much shorter than T1 and T2, that the atomic behaviour in 
this strong-signal limit is very different from that in the rate-equation limit. Whereas the population difference ΔN never 
changes sign in the rate equation limit but merely its magnitude NΔ gets reduced with respect to its equilibrium value ΔNe 
due to saturation according to (V-194), it oscillates at ωR  between ΔN0  and – ΔN0 in the strong-field limit. At the same time, 
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the induced polarization amplitude, instead of approaching its steady state value 00 EPss χε= , also oscillates with an 
amplitude that is independent of the driving field strength E0.   
 
This oscillatory behaviour of the population difference ΔN  and the polarization amplitude P(t) has been named the Rabi 
flopping behaviour after its inventor and occurs during an initial time interval short compared to either T1 or T2, before they 
are damped with these time constants and approach their steady state value  
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which have been previously also derived from the rate equation analysis. Comparison of (V-215a) with (V-194) and (V-206) 
yields the useful relation 
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Coherent light amplification by stimulated emission 
 
 
The mathematical treatment of stimulated emission on the basis of the rate equation approach [in particular: Eqs. (V-129c) or 
(V-128c)] does not provide answer to the important question whether stimulated emission allows coherent amplification of a 
light wave.  
 
By coherent amplification we mean a process that connects the complex amplitudes of a light wave  
 

( )1( , ) ( ) . .
2

i kz tE z t E z e c c−ω= +  

 
at the input (z = 0) and the output  (z = L) of the gain medium according to  
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=

=
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ensuring both ( ) ( 0)E z L E z= > = and a constant phase relationship between these amplitudes.   
 
In the rate-equation approach, we had to assume that the photons emitted as a result of stimulated emission have the same 
properties (momentum, energy, polarization) as the photons inducing the downward atomic transition to obtain Eq. V-122b. 

However, even this assumption leads “only” to  relationship out

in

gLF e
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γ= , which merely implies that                                                                 
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with no information being provided about the phase relationship between the input and output wave. The density matrix 
analysis resolves these shortcomings of the previous modelling in a natural way: it deliverers the polarization response of the 
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atomic medium (constitutive law); introducing the atomic susceptibility into Maxwell’s wave equation allows to determine the 
back-effect of the atomic transitions on the wave inducing these transitions.  
 
 
Connection between the gain coefficient, atomic susceptibility and transition cross section 
 
 
To become more quantitative, let us consider the practically important case of the interacting atoms being imbedded in some 
condensed-phase medium (most frequently by doping atoms into a solid-state host). The overall polarization can then be 
decomposed into a resonant component Ptransition due to the specific atomic transition and a non-resonant component Phost 
arising from the polarizability of the host medium: P  =  Phost + Ptransition, so that the relative permittivity of the laser medium, 
which enters the wave equation (IV-22), becomes  
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host( ) 1 ( ) ( ) ( ) ( )r nε ω = +χ ω +χ ω = ω +χ ω                                                                            (V-219) 
 
 
where n(ω) is the refractive index of the host medium. The light wave carried at a frequency resonant with the atomic 
transition  
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will then have a wave vector   
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where is the wave vector in the absence of the atomic resonance and we have utilized that )()/( ωω= nck 1<<χ , 
which follows from a concentration of the doping atoms is low as compared with the density of atoms of the host material. 
Substituting (V-221) into (V-220), we find that in the presence of the atomic resonance, the wave propagates according to  
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where  
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and (by making use of V-185’)   
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Equation (V-222) clearly satisfies the requirements of coherent amplification: the resonant atomic polarization causes a 
change of the phase delay per unit length by Δk and – for N2 > N1 ⇒ΔN < 0 – causes the amplitude of the wave to vary 
exponentially with distance according to exp[(γ/2)z]. Hence we may conclude that stimulated emission results in coherent 
amplification of a light wave. This holds true even if the wave amplitude becomes so strong that saturation occurs and thus 
the solution of the wave equation can not be given in the simple closed form represented by Eqs. (V-222), (V-223) and  

Equation (V-222) clearly satisfies the requirements of coherent amplification: the resonant atomic polarization causes a 
change of the phase delay per unit length by Δk and – for N2 > N1 ⇒ΔN < 0 – causes the amplitude of the wave to vary 
exponentially with distance according to exp[(γ/2)z]. Hence we may conclude that stimulated emission results in coherent 
amplification of a light wave. This holds true even if the wave amplitude becomes so strong that saturation occurs and thus 
the solution of the wave equation can not be given in the simple closed form represented by Eqs. (V-222), (V-223) and  
(V-224).   (V-224).   
  
  
  
  
  
  
Coherent amplification by stimulated emission Coherent amplification by stimulated emission 
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( ) ′′γ ω ∝ χ  

( )k ′Δ ω ∝ χ  

 
 

                        Fig. V-24 
 
 
 
Saturation of homogeneously- and inhomogeneously-broadened transitions  
 
 
Energy relaxation and dephasing imply that atomic transitions always possess a finite width; the Lorentzian line shape  
 

 - 167 - 



V. Semiclassical theory of light-matter interactions    polarization response of matter: quantum theory of the constitutive law 
 

2 2
0 2

0

1( ) 1
1 ( )

( )
T

′′χ ω ∝ +
+ + ω−ω

ωs

I
I

                                                                                    (V-185’’) 

                                                                                                                                                        
 
derived from the density matrix analysis has a power-dependent line width 
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and the dephasing time T2  defines the time scale characteristic for the loss of atomic coherence.  As the lineshape defined 
by (V-185’’) is to be assigned to each individual atom with the atoms being indistinguishable, this type of broadening is 
referred to as homogeneous broadening.    
 
Depending on the sign of the equilibrium population difference ΔNe the frequency dependence of either absorption or the 
gain of a laser medium is affected. Here we focus on the effect of line broadening on the behaviour of a laser transition 
during saturation. For a homogeneously broadened laser transition, the gain coefficient is given by  
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with 
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and is responsible for the linear output-power-versus-pump-power relationship of a homogeneously-broadened laser, see 
Eqs. (V-149a-c).    
 
In an inhomogeneous atomic system the individual atoms are distinguishable, with each atom having its own transition 
frequency  . The probability of finding and atom with its centre frequency between and , that 

is with in (V-225) is , resulting in an overall inhomogeneously broadened gain coefficient (exercise) 
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ω

                                                     
If the width of the distribution of transition frequencies is much broader than the homogeneous linewidth (V-196), we 

may pull outside the integral sign in (V-226). Furthermore, making use of the identity 
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we obtain the gain coefficient for a laser transition that is dominantly inhomogeneously broadened (exercise) 
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where  
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is the saturation intensity of the inhomogeneous line. Comparison of (V-228) with (V-225) reveals to essential differences: 
 

(1) In contrast with a homogeneously broadened transition the saturation intensity in the inhomogeneous case 
does not depend on the frequency of the interacting radiation. 

 
(2) The inhomogeneous atomic ensemble saturates more “slowly” as indicated by the square root in (V-228a). 

Although the population inversion within a “homogeneous packet” saturates as in (V-225), this saturation is 
partly compensated by the fact that the number of interacting atoms (contributing to the gain at the frequency 
of the incident light  wave) increases due to power broadening (V-196). 

 
(3) Gain saturation in the inhomogeneous system burns a “hole” in the plot of the gain coefficient as a function of 

frequency the width of which is dictated by the power-broadened homogeneous linewidth given by (V-196), 
whereas saturation of the homogeneous line does not affect the gain profile, merely reduces its magnitude. 
Fig. V-25 compares the spectral profile of saturated gain, )(ωγ , with that of unsaturated gain, )(0 ωγ , as 
“seen” by a weak probing signal of frequency 'ω , for a homogeneously-broadened (a) and inhomogeneously-
broadened (b) transition, both saturated with a strong signal at ω .  
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Fig. V-25 


