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V. Semiclassical theory of light-matter interactions 
 
Classical and quantum mechanics of the electron in a light field 
 
Joseph John Thomson (1856-1940) performed a famous experiment in 1897, in which he showed that the “cathode rays” 
consist of negatively charged particles. These particles have become known as the electrons. They carry the elementary 
charge  
 
                                                  e = 1.602 x 10-19 C   
 
Their mass  
 
                                                  m = 9.109 x 10-31 kg   
 
is orders of magnitude smaller than the mass of other charged particles. As compared to other charged particles (such as 
e.g. protons) electrons therefore  
 

• move fast and create high microscopic current at the expense of moderate excitation energy    
 
and 
 

• respond swiftly to light fields. 
 
As a consequence, the motion of electrons is responsible for  
 

i) the emission of optical radiation  
 

and 
  

ii) the response of matter to optical radiation.   
 
 
Thus electrons are key players in both the generation of light and light-matter interactions.    
Light emission from excited atoms, molecules or solids just as the polarizability of matter (expressed in terms the linear and 
nonlinear susceptibilities in the constitutive law) are direct consequences of the motion of electron on a sub-atomic scale. 
Hence the theory accounting for the generation of light (both coherent and incoherent) and the optical properties of materials 
(expressed in terms of the linear and nonlinear susceptibilities in the constitutive law) must address the motion of electrons in 
light-fields. This motion can be accounted for accurately only in the framework of quantum mechanics. The quantum 
mechanical motion of electrons in classical electromagnetic fields forms the basis for the description of a wide-range of light 
generation and propagation phenomena. This model is referred to as the semiclassical theory of light-matter interactions. Its 
postulates include those of electromagnetic optics and those of the quantum theory of the electron.  
 
 
 
 

Semiclassical theory of light-matter interactions = 
 

electromagnetic optics + quantum mechanics of the electron 

 
 
 
 
 
 
 
 
Hamiltonian formulation of classical mechanics, the Poisson bracket 
 
The transition from classical to quantum mechanics can be made most conveniently by using the Hamiltonian formulation of 
classical mechanics (the simplest formulation of which is based upon Newton’s law).  
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The state of motion of a mechanical system with f degrees of freedom is fully characterized at any instant by 2f variables, by f  
coordinates  
  

q1, q2, q3, ……, qf, 
 

and by f generalized (so-called canonical) momenta  
 

p1, p2, p3, ……, pf, 
 

which obey Hamilton’s equations of motion: 
 
 

i

i

dq H
dt p

∂
=

∂
                                                                                                                                     (V-1) 

 
 

i

i

dp H
dt q

∂
= −

∂
                                                                                                                                  (V-2) 

 
where 
 

H = H (qi, pi,t)                                                                                                                                 (V-3) 
 
 
is the Hamiltonian of the mechanical system. This formalism can be extended to other fields of physics, e.g. the equations of 
the electromagnetic fields can also be formulated this way. Generally, finding the Hamiltonian of a physical system is not 
straightforward. The proper Hamiltonian is one which leads to a description of the physical system that is in agreement with 
experimental observations. If the equations of motion are known, the Hamiltonian can usually be constructed by guessing, so 
that Eqs. (V-1) and (V-2) are the proper equations of motion. If H does not explicitly depend on time, i.e.  
 
 

0H
t

∂
=

∂
                                                                                                                                            (V-4) 

 
 
as is the case for any isolated system not acted on by external forces, the Hamiltonian happens to represent the total energy 
of the system. In these cases the construction of the Hamiltonian is fairly straightforward. 
 
 
The Poisson bracket 
 
 
The concept of the Poisson bracket will be important for our discussion of quantum mechanics. Let F(qi,pi,t) an arbitrary 
analytic function. Its time variation can be expressed by its total derivative with respect to time 
 

1

f
i i

i ii

dq dpdF F F F
dt q dt p dt t=

⎧ ⎫∂ ∂
= +⎨∂ ∂⎩ ⎭

∑ ∂
+⎬ ∂

                                                                      (V-5) 

 
 
Using the canonical equations of motion, (V-1) and (V-2), we can write (V-5) in the form  
 
 

                                        - 108 - 



V. Semiclassical theory of light-matter interactions     classical and quantum mechanics of the electron in a light field 

1

f

i i i ii

dF F F H F H
dt t q p p q=

⎧ ⎫∂ ∂ ∂ ∂
= + −⎨∂ ∂ ∂ ∂⎩ ⎭

∑ ∂
⎬∂

                                                               (V-6) 

 
 
The sum term is called a Poisson bracket and is written as 
 
 

{ }
1

,
f

i i i ii

F H F HF H
q p p q=

⎧ ⎫∂ ∂ ∂ ∂
= −⎨∂ ∂ ∂ ∂⎩ ⎭

∑ ⎬                                                                              (V-7) 

 
 
The time derivative of F can now be rewritten as 
 
 

{ ,dF F F H
dt t

∂
= +

∂
}                                                                                                                (V-8) 

 
 
It is apparent from the definition of the Poisson bracket that  
 
 

{ }, 0 dH HH H
dt t

∂
= ⇒ =

∂
                                                                             (V-9) 

 
 
indicating that H is conserved during the motion if we have to do with an isolated system represented by (V-4). This supports 
our claim that H is the total energy of the system.  
 
Another interesting case of a special Poisson bracket is  
 
 

{ },i jq p = δij                                                                                                                               (V-10) 

 
where δij is the Kronecker symbol and equals unity if i=j and zero if i≠j.   
This brief derivation of the expressions of Hamiltonian mechanics includes all the formulas that we will need to develop 
quantum mechanics. Before doing that let’s see how Hamiltonian mechanics leads to the well-known formulas of Newtonian 
mechanics for a point particle moving in a conservative potential and a charged particle moving in a temporally-varying 
electromagnetic field.  
 
 
Point particle in a conservative potential 
 
A conservative potential is a function of the spatial coordinate V(r), defined so that the force acting on the particle is given by  
 
 

F = −∇V(r)                                                                                                                                                (V-11) 
 
In a Cartesian system the variables characterizing the state of motion of a point particle are the coordinates x,y,z and the 
momenta px, py, pz. If the Hamiltonian represents the energy of the particle, it takes the form 
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2 2 21 ( ) ( , , )
2 x y zH p p p V x y z
m

= + + +                                                                                       (V-12) 

 
 
Now the canonical equation (V-1) leads to  
 

1
x

dx x p
dt m

≡ =&                                                                                                                                           (V-13a) 

 
 

         
1

yy p
m

=&                                                                                                                                             (V-13b) 

 
 

         
1

zz
m

=& p                                                                                                                                                  (V-13c) 

 
and the canonical equation (V-2) results in  
   

x x
Vp F
x

∂
= − =

∂
&                                                                                                                                             (V-1

 

4a) 

y
V

yp F
y

∂
= − =

∂
&                                                                                                                               (V-14b) 

 

z
V

zp F
z

∂
= − =

∂
&                                                                                                                                               (V-14c) 

 
hich are the well-known equations of motion. 

harged particle in an electromagnetic field 

rom (V-12) it is obvious that the Hamiltonian of a particle of charge e and mass m in a static electric field E characterized by 

w
 
 
 
C
 
F
the scalar potential Φ is given by 
 
 

2 2 21 ( )
2 x y zH p p p
m

= + + + eφ
 

e now postulate that the Hamiltonian of the same particle in a temporally-varying electromagnetic field is obtained from (V-

i

                                                                                                                     (V-15) 

 
W
15) by simply performing the substitution 
 

i ip p eA→ −                                                                                                                                                        (V-16) 

A
 
where i  is the respective Cartesian component of the vector potential of the electromagnetic field. 
With this transformation we obtain 
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( ) ( ) ( )22 21
2 x x y y z zH p eA p eA p eA e
m

⎡ ⎤= − + − + −⎢ ⎥⎣ ⎦
+ φ                                            (V-17) 

 

sing (V-17), the canonical equations lead to 
 
U
 
 

1 ( )x xx p eA
m

= −&                                                                                                                                   (V-18) 

 

nd similar equations for the y and z components. Equation (V-2) yields for the x component of the  canonical momentum 
 
A
 
 

( ) ( ) ( )yx z
x x x y y z z

Ae A Ap p eA p eA p eA e
m x x x x

∂⎡ ⎤∂ ∂
= − + − + − −⎢ ⎥∂ ∂ ∂⎣ ⎦

& ∂φ
∂

                 (V-19) 

 

ifferentiating Eq. (V-18) with respect to time and substituting (V-19) gives 
 
D
  

2

2
x xd x dp dAm mx e

dt dtdt
≡ = −&&  =

 

( ) ( ) ( )yx z
x x y y z z

Ae A A dAxp eA p eA p eA e e
m x x x dt x

∂⎡ ⎤∂ ∂
− + − + − − −⎢ ⎥∂ ∂ ∂⎣ ⎦

∂φ
∂

          (V-20) 

 

 
hich, by substituting dx/dt from (V-18) and using the corresponding equations for the y and z components, simplifies to  

 

W
 
 

yx z xAA A dAmx e x y z e e
x x x dt x

∂⎛ ⎞∂ ∂
= + + − −⎜ ⎟∂ ∂ ∂⎝ ⎠

&& & & &
∂φ
∂

                                                                 (V-21) 

 

xpressing the total derivative of Ax with respect to time as   
 
E
 
 

x x x xdA A A A Ax y z
dt x

x
y z

∂ ∂ ∂ ∂
= + + +

∂ ∂ ∂
& & &

t∂
                                                                                         (V-22) 

 

 (V-21), we obtain 
 
in
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⎡ ∂ ⎤⎛ ⎞∂ ∂ ∂ ∂ ∂φ⎛ ⎞= − − − − −⎢ ⎥⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂ ∂ ∂⎝ ⎠⎝ ⎠⎣ ⎦
&& & &y x x z xA A A A Amx e y z e e

x y z x t x
3) 

y using the connection between the potentials A, Φ and the fields E and B as given by (IV-23), the potentials in (V-23) can 

                                      (V-2

 
 
B
be expressed with the respective components of the electric and magnetic fields as 
 
 

[ ( ) ]xmx e E= + × xv B&&                                                                                                                                    (V-24) 

here v is the velocity of the charged particle. With the corresponding equations derived for the y and z components, so that 

 
 
w
Eq. (V-24) can be written in vector notation as  
 
 

( )dm e
dt

= + ×
v E v B                                                                                                                                         (V-25) 

 

quation (V-25) represents the equation of motion of a charged particle subject to the Lorentz force. Hence the respective 

athematical tools of quantum mechanics in Dirac’s representation  

perators and vectors 

assical mechanics uses variables, such as the position and momentum of particles, and functions of these variables to 

uantum mechanics does not permit all variables of a physical system to be measurable independently. It replaces the 

he state vectors, on which the quantum mechanical operators operate, are written in Dirac’s notation1  

 
E
Hamiltonian is properly defined by (V-17), consequently the influence of an electromagnetic field on a point charge can be 
accounted for by replacing the momentum vector p by the vector p – eA in the Hamiltonian.  
 
 
 
 
M
 
 
O
  
Cl
describe the state of physical systems. The variables are assumed to be measurable  with any degree of accuracy. The 
measurement of any of these variables does not influence the measurement of any other variable.  
 
Q
classical variables by operators that operate on state functions (Schrödinger’s representation) or vectors (Dirac’s 
representation) used to describe the state of a physical system. 
 
T
 

a                                                                                                                                                                         (V-26) 
 
nd are called ket vectors, which constitute vectors of infinite dimension. The scalar (or inner) product of two state vectors a
a  and b is written as  

 

b a                                                                                                                                                                     (V-27) 
 

he scalar product of two state vectors results in a complex number and is defined such that  

                                                

 
T
 
 

 
1 P. A. M. Dirac, The Principles of Quantum Mechanics, 4th. Ed. (New York: Oxford, 1958). 
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*a b b a=                                                                                                                                                      (V-28) 
 

irac called the vectors appearing on the left hand side as bra vectors. His terminology derives from the fact that in his above 
 
D
notation the bra and the ket vectors combine to form a bracket, when they scalar product, which plays a central role in 
quantum mechanics, is calculated.  If the operator Â  operates on the vector a  the scalar product of the new vector 

aÂ with vector b leads to a new complex number  

         
                                                                                   

        
                  

ˆb Aa                                                                                                                                                  (V-29) 

 

at is different from
 

. We now define the operator †Â   abth such that  
 
 

=†ˆ ˆA b a b Aa                                                                                                                                          (V-30) 

 

hich is called the adjoint operator of 
 

Âw . From this definition and (V-28) it is evident (exercise) that 

• 

 
  

††ˆ ˆA A=     for any operator                                                                                                                  (V-31a) 

• If  

 

Â c= (that is, if Â  is simply a complex ⇒number)    
†Â c∗=                                                    (V-31b) 

• 
†

 
† †ˆ ˆ ˆ ˆ( )AB B A=                                                                                                                                     (V-31c) 

•                                                                                                                                        (V-31d) 

 
† †ˆ ˆ( )cA c A∗=

 
 
 AA ˆˆ † =If , we call the operator a self-adjoint operator or a Hermitian operator. In this case we have  

 
 

ˆ ˆAb a b Aa=                                                                                                                                              (V-32) 

 
 

at is the operator can be applied either to the bra or the ket vector, the scalar product of the two vectors (for an arbitrary 
oice of the vectors) is the same. As a consequence, we can introduce the symmetric notation 

th
ch
 
 

ˆ ˆ ˆb A a b Aa Ab a≡ =                                                                                                                     (V-33) 

 
 
ecause having the operator sandwiched between the bra and the ket vector operate on either of them yields the same b

result if Â  is Hermitian. A very important property of Hermitian operators is (exercise)  that  
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ˆa A a  = real number                                                                                                                                              (V-34) 

 
igenvectors and eigenvalues 

he relation  

E
 
 
T
 
ˆ

n n nA a a a=                                                                                                                                      (V-35) 
  

eans that operation of
 

 Â  on na  does not change the “direction” but merely the “magnitude” nam of a state  into a new 

e number nvector, merely multiplies it with th a  called the eigenvalue with na  being the respective nvector of the 

operator 

eige

Â . From (V-34) and (V-35) follows that the eigenvalues of Hermitian operators are real numbers. 
 
 
The eigenvectors of Hermitian operators are mutually orthogonal (exercise) 
 
 

0m na a =                                                                                                                                          (V-36) 
 

nd form a complete set, that is any state vector 
 

 ψa  can be expressed as a sum of the orthogonal eigenvectors  
 
 

0
n n

n
c a

∞

=
ψ = ∑                                                                                                                                    (V-37) 

 

here cn are expansion coefficients. It is customary and convenient to normalize the eigenvectors so  that 
 
w 1=nn aa . 
The mutual orthogonality with this normalization can now be expressed as  
 
 

1 if
0 ifn m nm

n m
a a

n m
=⎧

= δ = ⎨ ≠⎩
                                                                                                             (V-38) 

 

ith δnm representing Kronecker’s delta. With this normalization the expansion coefficients in (V-37) can be expressed as  
 
w
 
 

n nc a= ψ                                                                                                                                                          (V-39) 
 

 that  so
 
 

0
n n

n
a a

∞

=
ψ = ψ∑                                                                                                                                     (V-40) 
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We can now formally write  
 
 

0
n n

n
a a

⎛ ⎞
ψ = ⎜∑

∞

=
ψ⎟

⎝ ⎠
                                                                                                                          (V-41) 

 
 
And introduce the identity operator   
 
 
ˆ

n na a= ∑                    
n

                                                                                                                                (V-42) 

which can be expressed 
operator (which is also H
 

nctions of the coordinates qi  and momenta pi, such as the energy 
 “observables”. The term “observable” describes any quantity 

ccessible to measurement whether actually or in principle. 

tor 
e probability – result in one of the 

eigenvalues of the corresponding Hermitian operator. 

I

 
in this manner by using any complete orthonormal set of state vectors. This form of the identity 
ermitian) is very useful for finding series expansions for products of operators and vectors. 

 
 
Postulates of quantum mechanics 
 
 
In classical mechanics we dealt with fu

. We call these quantities collectivelyH
a
 
  

• Postulate #1: Every physical observable is mathematically represented by a Hermitian opera
and a measurement of this observable will – with som

 
• Postulate #2: The quantity ψψ Â  represents the average value of a series of 

measurements on an ensemble of systems that are all described by the state vector ψ . 
 

• Postulate #3: The operator Â  of a physical observable is the same function of th
the coordinates qi  and momenta pi, ),ˆ,ˆ(ˆ tpqfA ii= , as the corresponding classical variab

e operators of 
le of 

the coordinates qi  and momenta pi, A = f (qi,pi,t).  
 
• Postulate #4: The quantum-mechanical Poisson bracket is defined as  

 

             { } 1 1ˆ ˆ ˆ ˆ ˆ ˆ, ( ) [ , ]A B AB BA A B
i i

→ − ≡
h h

                                                                      (V-43) 

 
s cla

            

and has the same physical meaning as it ssical-mechanical counterpart. Here  
 

341.05 10
2

Js= = ×
π

h                                                                                           (V
h − -44) 
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’s constant divided by 2

 

he imme  classical expressions (V-8) and (V-10) are that the time variation of the 
operator of a physical observable 

is Planck π.  

 
T diate consequences of postulate #4 and the

F̂ is given by 
 
 

ˆ ˆ 1 ˆ ˆdF F∂ [ , ]F H
dt t i

= +
∂ h

                                                                                                                          (V-45) 

 
 
and the operators  and corresponding to the classical coordinates and momenta have the commutator 

              (V-46) 

Unitary transformations – quantum mechan

e be an operator which – when operating upon all state vectors – does not change the scalar product of the vectors 

iq̂ ip̂
 
 

ˆ ˆ ˆ ˆ[ , ] ( )i j i j j i ijq p q q i≡ − = δh                                                                                                     ˆ ˆp p
 
 

ical pictures 
 

t ÛL
 
 

ˆ ˆU Ub a b=                                                                                                                                              (V-4a 7a) 

 
From this requirement follo

 

ws (exercise) that  
 
 

† †ˆ ˆ ˆ ˆ ˆU U UU= = I                                                                                                                                                 (V-47b) 

The operator is called 
ading to the transformed state vectors and operators  

 
 

Û  a unitary operator. The above property of the unitary operator implies that the transformation 
le
 
 
ˆ 'U ψ = ψ                                                                                                                                                            (V-48a) 

  

leaves   

 

†ˆ ˆ ˆ ˆ 'U A U A=                                                                                                                                                            (V-48b) 
 
 

 
 

Âψ ˆ' ' 'Aψ = ψ ψ                                                                                                                                  (V-49) 
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 Âunchanged for any Hermitian operator . As a consequence, this transformation, which is called a unitary transformation, 
does not alter the result of a measurement. Hence, the transformed state vectors 'ψ and the transformed operators 

'Â can be equivalently used for the quantum mechanical description of a physical system. This set of state vectors and 
res

quation (V-45) is called the equation of motion in the Heisenberg picture. This particular quantum-mechanical picture 
ally 

he Schrödinger picture, the Schrödinger equation 

he most frequently used quantum mechanical picture is the Schrödinger picture, in which the state vectors evolve in time 

et us now find the unitary operator that transforms the Heisenberg picture into the Schrödinger picture. 
-45) as 

pective operators form a quantum mechanical picture. The unitary transformation (V-48) leads us from one quantum 
mechanical picture into another one. Because there are infinitely many unitary operators, there are also infinitely many 
possible quantum mechanical pictures.  
 
E
assumes that the operators vary with time while the state vectors are time-independent. The Heisenberg picture is form
analogous to classical mechanics, because the equations of motion for the operators resemble the corresponding classical 
equations.  
 
 
T
 
T
and the operators are constant (except for a possible explicit time dependence).  
 
L
The total time derivative of the transformed operator is obtained by differentiation of (V-48b) and using (V
 
 

†
† †ˆ ˆ ˆ ˆ' ˆ ˆ ˆ ˆ ˆ ˆdA dU dA dUAU U U UA

dt dt dt dt
= + + =                                                                                              

 
†

† † †ˆ ˆ 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ]dU A dUAU U U U A H U UA
dt t i dt

∂
+ + +

∂ h

ˆ
                                                                  (V-50) 

 

nd required to be zero in the case of  , leading to  
 
a 0/ˆ =∂∂ tA
 

†
† †ˆ ˆ 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ[ , ] 0dU dUAU UA U A H U

dt dt i
+ +

h
=                                                                                      (V-51) 

 

hich can be reformed as 
 
w
 

†
†ˆ ˆ 1ˆ ˆ ˆ ˆ ˆ ˆ ˆ ˆ' ' ( ' ' ' ') 0dU dUU A A U A H H A

dt dt i
+ + −

h
 =

 
r                                                                                                                                                        o

 

†
†ˆ ˆ1 1ˆ ˆ ˆ ˆ ˆ ˆ' ' ' 'dU dUU H A A U H

dt i dt i
⎛ ⎞ ⎛

− + +⎜ ⎟ ⎜
⎝ ⎠ ⎝h

0
⎞

=⎟
⎠h

                                                                       (V-52) 

 

y making use of (V-48b) for bot
 

h Â  and the Hamilton operator . Since this has to hold for any Ĥ Âb , we have to require 
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†ˆ ˆ1ˆ ˆ 'dU dUU H i H
dt i dt

= ⇒ =h
h

ˆ ˆ'U                                                                                                   (V-53) 

 
 
We have found an operator equation to determine the unitary operator U that transforms the Heisenberg picture into the 
Schrödinger picture. By differentiating (V-48a), using (V-53) and utilizing that 

ˆ
0/ =ψ dtd  in the Heisenberg picture, we 

obtain the equation of motion in the Schrödinger picture 
 
 

ˆ' 'di H
dt

ψ = ψh '                                                                                                                                    (V-54) 

 
 
which is the well-known Schrödinger equation for the time variation of the state vectors in the Schrödinger picture.  
 
  
 
The Schrödinger representation: wave mechanics 
 
 
Different sets of orthogonal vectors may be used for representing quantum mechanical states. In the most widely used 
representation, the so-called Schrödinger representation, the eigenvectors of the position operators  are used as basis 
vectors. In what follows we restrict ourselves to one dimension 

iq̂

By considering the continuous set of eigenvalues q  of the position operator q . The corresponding eigenvectors ˆ q  form a 

complete orthogonal set, satisfying qqqq =ˆ . Any arbitrary state vector can be expressed as a sum of these 
eigenvectors by using the expansion coefficients 
 
 

( )c q q= ψ                                                                                                                                                           (V-55) 
 
 
Since the spectrum of eigenvalues is continuous, c(q) is a continuous function of q and fully represent the state vector ψ  
in the Schrödinger representation. To establish the connection between the expansion coefficients and the state vector, we 
can rename the function c(q) as  
 

( ) ( )q cψ ≡ q                                                                                                                                                         (V-56) 
 
 
in which we recognize the familiar wave function of wave mechanics. The scalar product of two state vectors  1ψ  and 

2ψ  can be expressed in the Schrödinger representation as 
 
 

1 2 1 2* nd qψ ψ = ψ ψ∫                                                                                                                            (V-57) 

 
 
where the integration is to be performed over all n coordinates of the system.  
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To obtain the equation of motion of wave mechanics, we need to construct the operators  and .  When doing so the 
commutation relation (V-46) must be satisfied. A convenient choice is to define   

iq̂ ip̂

 
• ˆiq as a real multiplicative factor qi                                                                                                (V-58a) 
 
and 

• ˆ i
i

p i
q
∂

= −
∂

h                                                                                                                          (V-58b) 

 
which obey the commutation relation  (V-46) and constitute the Schrödinger representation of the canonically conjugate 
position and momentum operators.  
 
By dot-multiplying (V-54) with the bra vector q  and utilizing  
 

( )dq q
dt t t

∂ ∂
ψ = ψ = ψ

∂ ∂
q                                                                                                          (V-59) 

 
 
(where the partial differentiation indicates that only the explicit time dependence of )(tψ  but not q  must be 
differentiated) we obtain the equation of motion of wave mechanics 
 
 

ˆ ˆ ˆ( , ) ( , )i i ii H q p
t

∂ψ
= ψ

∂
h q t                                                                                                                  (V-60) 

 
 
Equations (V-58) and (V-60) along with postulate #3 now allow us to construct a differential equation describing the temporal 
evolution of the wave function of a quantum mechanical system, whereas the recipe for the practical implementation of the 
scalar product along with postulates #1 and #2 permit us making predictions (in form of statistics and probabilities) about the 
results of physical measurements.  
 
This formalism now allows us to develop the quantum theory of the electron in the presence of light fields and using this 
theory for describing light-matter interactions.  
 
 
Quantum mechanics of a single particle in a conservative potential, centre-of-mass motion of a particle: Ehrenfest 
theorem 
 
 
By using the postulates of quantum mechanics we can now make some predictions for the expectation values of physical 
observables. To this end, we shall use the Schrödinger picture. According to Postulate #2, the rate of change of the 
expectation value of the physical observable represented by the Hermitian operator is given by  ),ˆ,ˆ(ˆ tpqfA ii=
 
 

d A d d A dA A A
dt dt dt t dt

∂⎛ ⎞ ⎛ ⎞= ψ ψ = ψ ψ + ψ ψ + ψ ψ⎜ ⎟ ⎜∂⎝ ⎠ ⎝ ⎠
⎟        (V-61) 

 
 
In the Schrödinger picture we can now express – according to (V-54) – the temporal derivative of the state vector with the 
Hamilton operator, yielding 
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ˆ 1 ˆ ˆ[ , ]
d A A A H

dt t i
∂

= +
∂ h

                                                                                                                    (V-62) 

 
 
For a particle moving in a conservative potential we obtain from the classical Hamiltonian given by (V-12) the Hamilton 
operator in the Schrödinger representation 
 
 

= − ∇ +
h2

2ˆ ( , , )
2

H V x y z
m

                                                                                                                   (V-63) 

 
 

where we have utilized that  ˆxp i
x

∂
= −

∂
h , ˆyp i

y
∂

= −
∂

h , and ˆzp i
z

∂
= −

∂
h . 

 
 
By the use of (V-62) we can now calculate the expectation value of the rate of change of the position and the momentum can 
be written as (exercise) 
 
 

∂ψ
= ψ ∇ − ∇ ψ = ψ =

∂∫
h h

h

2
2 2 31 *

2
xd x pix x d r

dt i m m x m
                            (V-64a) 

 
         
 
and  
 
 

1 ( ) ( ) ( )xd p Vi V V
dt i x x x

∂ ∂
= − ψ − ψ = −

∂ ∂
r rh

h

∂
∂

                                               (V-64b) 

 
where we have utilized that x commutes with V(x) and x commutes with , respectively.  The centre-of-mass motion of 
the quantum mechanical particle obeys the classical equation of motion. This is Ehrenfest’s theorem. 

p̂ 2p̂

  
 
 
Quantum mechanics of the electron in an electromagnetic field, electric dipole approximation 
 
 
The classical Hamiltonian of a physical system consisting of an electron (of charge e = - IeI) and an  electromagnetic field is 
given by r 
 
 

Htotal  =  He + Hfield                                                                                                                                             (V-65a) 
  
 
where  
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1 ( )
2

2
eH e

m
= − +p A eφ                                                                                                                             (V-65b) 

 
 
and  
 

2 2 2 3
field 0

1 ( )
2

H c= ε +∫ E B d r

int

                                                                                                             (V-65c) 

 
 
Htotal describes an energy-conserving system, as opposed to He. However, for intense fields, the field energy exceeds that of 
interacting electrons by many orders of magnitudes, that is the relative change of the field energy during the interaction is 
negligible. In this case the fields are virtually not affected by the interaction and can be considered as classical input 
variables in He. These considerations form the basis for the description of light-electron interactions in the semiclassical 
approximation. If the fields become weak, they must also be quantized and Htotal is used.  
 
For the time being, we assume sufficiently intense fields so that the semiclassical description remains valid so that only the 
particle observables need to be quantized. The Hamiltonian of the electron can be decomposed into  
 
 
 

0
ˆ ˆ ˆ

eH H H= +                                                                                                                                                      (V-66) 
 
 
with 
 

= − ∇ +
h2

2
0

ˆ ( )
2

H
m

rV                                                                                                                                       (V-67) 

 
 
where the static scalar potential has been incorporated in the conservative potential V(r) and 
 
 

2
2

int
ˆ ˆ ( , ) ( , )

2
e eH t
m m

= − +pA r A r t                                                                                                       (V-68) 

 
 
In deriving (V-68) from (V-65b) we made use of the Schrödinger representation of the position operator r and the momentum 
operator    together with the operator relation  ∇− hi ∇ A = A ∇ , which directly follows from the use of the Coulomb gauge  

∇ A = 0   and assuming   0=φ
∂
∂
t

. 

The Coulomb gauge and the static scalar potential imply a transverse time-varying (radiation) field according to (IV-23b). 
 
Unless the light fields become extremely strong, the second term in is negligible with respect to the first, leading to  intĤ
 

int
ˆ ˆ ( , )eH

m
≈ − pA r t                                                                                                                                         (V-69) 
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Equation (V-69) can be changed by another approximation, which turns out to be very useful. If the electron´s motion is 
confined to a volume small compared to the wavelength of the electromagnetic wave, the vector potential in is – to a 
good approximation – constant in space:  

intĤ

 

0( , ) ( , )t t≈A r A r   
 
where r0 is the centre of gravity of the electron’s probability distribution. This approximation is referred to as the electric 
dipole approximation. 
 
For a harmonic field oscillating at ω, hence according to (IV-23b) (exercise) 
 

0 0( , ) ( , / 2 )t t=ω − π ωE r A r                                                                                                                      (V-70) 
 
The electron subjected to this field has a momentum that also varies periodically 
 

( ) ( / 2 )dt m m t
dt

= = ω + π ω
rp r                                                                                                              (V-71) 

 
where we assumed r0 = 0. From (V-70) and (V-71) we obtain 
 

0 0( / 2 ) ( , / 2 ) ( ) ( , )t t m t− π ω − π ω =p A r r E tr  
 
yielding  
 

intĤ e= − E r                                                                                                                                       (V-72) 
 
This expression of the interaction Hamiltonian has a simple intuitive meaning: a particle of charge e experiences a force eE 
in the electric field; if it is moved a distance r in the direction of the field it changes its potential energy by an amount of – eEr, 
explaining the name of the approximation leading to this form of  . intĤ
 
From (V-66), (V-67) and (V-72) the Hamilton operator of an electron in an electromagnetic field in the Schrödinger 
representation takes the form 
 

2
2ˆ ( )

2eH V
m

= − ∇ + −r E rh e                                                                                              (V-73) 

 
 
 
 
Ensemble average – the density matrix  
 
 
Quantum mechanics makes only predictions of probabilistic or statistic nature. There are two types of uncertainties in 
quantum mechanical system. The first type of uncertainty is implicit in Postulate #2 and occurs even if the state vector 
(possibly represented by the wave function) is precisely known. The second type of uncertainty results from insufficient 
information about the state of a quantum mechanical system or from our inability to put each individual system in an 
ensemble of identical system into the same quantum mechanical state. This second type of uncertainty is handled by the 
density matrix. 
 
The state vector of a system may be expressed in terms of a complete orthonormal set of eigenvectors of some operator  
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0
n n

n
c

∞

=
ψ = ϕ∑                                                                                                                                 (V-74) 

 
 
so that the expected value of a physical observable becomes 
 
 

, 0

ˆ
m n m n

m n
A c c A

∞
∗

=
ψ ψ = ϕ ϕ∑ ˆ                                                                                                   (V-75) 

 
 
Calculation of this expectation value assumes that the expansion coefficients cn are precisely known. If this is not the case, 
Eq. (V-75) is fairly meaningless unless we interpret it as an average over the incompletely known values of cn. The averaging 
can be introduced as follows. Let us prepare an ensemble of N systems (N large) so that they their quantum states  
 
 

( )

0
( ) ( )s

s n
n

t c t
∞

=
ψ = ϕ∑ n                                                                                                                           (V-76) 

 
 
are as nearly identical as allowed by our incomplete information. The ensemble average of is then computed 
according to the formula 

)()( )()( tctc s
n

s
m

∗

 
 

( ) ( )

1

1( ) ( ) ( ) ( )
N

s s
m n m n

s
c t c t c t c t

N
∗ ∗

=
= ∑                                                                                                      (V-77) 

 
 
It is convenient to define  
 
 

nm m nc c∗ρ =                                                                                                                                         (V-78) 
 
 
The matrix formed by the values of ρnm is known as the density matrix. Its diagonal elements ρnn gives the probability of 
finding any one of the systems in the ensemble in the state nϕ . The off-diagonal term ρnm  is related to the radiating dipole 
of the ensemble, as we shall see in the next Chapter. 
 
With this notation, the ensemble average of the expectation value of the physical observable Â  can be written as  
 

,

ˆ
m n m n

m n
A A c c A∗= ψ ψ = ϕ ϕ∑ ˆ                                                                                    (V-79) 

 
 
For convenience, we can define the matrix elements  
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ˆ
mn m nA A= ϕ ϕ                                                                                                                               (V-80) 

 
 
Eq. (V-80) is the matrix representation of the operator Â  in terms of the complete orthonormal set of state vectors nϕ . If 

Â  is a Hermitian operator, its matrix elements satisfy 
 
 

k kA A∗=l l                                                                                                                                               (V-81) 
 
 
ρnm may also be considered as the representation of an operator ρ̂ called the density operator in the nϕ representation. 

From Eq. (V-78) and (V-81) follows that ρ is a Hermitian operator.  ˆ
 
With (V-78) and (V-80) the ensemble average of the expectation value of the physical observable Â  takes the form 
 
  

, 0
nm mn

m n
A A

∞

=
= ρ∑                                                                                                                                        (V-82) 

 
 
which can be rewritten as the sum of the diagonal elements of the matrix 
 
 

k kn
n

M = ρ∑l nA l                                                                                                                                  (V-83) 

 
 
to yield 
 
 

ˆˆ ˆˆ( ) ( )nn nn
n n

A M A Tr= = ρ = ρ∑ ∑ A                                                                                            (V-84) 

 
 
 
which is called the trace of the product of the matrices  ρ̂  and Â . Although for the calculation of the ensemble average of 

Â  we used the representations of  and ρ̂ Â in the nϕ  representation, it can be shown (exercise) that the trace of  
and hence the ensemble average of the expectation value of a physical measurable is independent of the choice of the 
system of unit vectors 

Âρ̂

nϕ . The average given by (V-84) is an average in a double sense. It is a statistical average of 
quantum-mechanical average (expectation) values.   
 
 
 
The time evolution of the density matrix 
 
 
The states (V-76) of each system in the ensemble satisfy Schrödinger’s equation 
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ˆi H
t

∂ ψ
= ψ

∂
h                                                                                                                                                (V-85) 

 
 
Substituting (V-74) for ψ yields 
 
 
 

( ) ˆ( )n
n n

n n

dc ti c
dt

ϕ = ϕ∑ ∑h nt H                                                                                                    (V-86) 

 
 
Multiplying Eq. (V-86) with the bra vector mϕ and using the orthonormality of the eigenvectors nϕ we obtain 
 
 

= ∑h ( ) ( )m n
n

di c t c t H
dt mn                                                                                                                    (V-

87) 
 
 
where nmmn HH ϕϕ= ˆ . From Eq. (V-78)  
 
 
 

nm m n
n m

d dcc c
dt dt dt

∗
∗ρ

= +
dc

                                                                                                                        (V-88) 

 
 
By making use of (V-87) and the Hermiticity of H , Eq. (V-88) takes the form ˆ
 
 
 

ˆ ˆ ˆ[ ,di H
dt
ρ

= ρh ]                                                                                                                                                    (V-89) 

 
 
 
which is the equation of motion of the density operator in the Schrödinger picture. 
  
 
                                
 


