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Nonlinear polarization, light modulation and frequency conversion  
 
 
Under “everyday” circumstances, the electric field of a light wave induces a dipole density called polarization that in a 
lossless and dispersionless medium is connected with the electric field of a light wave by the linear constitutive law given by 
(IV-15). For very strong field strengths this simply linear relationship between the applied field and the dipole moment 
induced by the field may not hold true and the term linear in E needs to be supplemented with an additional induced 
polarization vector PNL that depends in a nonlinear manner upon the strength of the light field  
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where the subscript i stands for one of the three Cartesian components of the field vector and PL is the polarization vector 
increasing linearly with the electric field strength. In order to express the nonlinear polarization vector with the light electric 
field in a general manner, we assume that the electric field vector can be represented as a sum of a number of 
monochromatic waves  
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Where En is the complex amplitude and Fn is the complex envelope of the wave of frequency ωn and wave vector kn. Both En 
and Fn are dependent on the spatial coordinate r, with Fn usually exhibiting only a small variation over a distance comparable 
to the wavelength (slowly-varying envelope approximation). For convenience, we introduce the notation  
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to eliminate ½ and its powers in the subsequent expressions and extend the notation to negative frequency components 
 
 

( ) * ( ); ( ) * ( )n n n−ω = ω −ω = ωE E F F n                                                                (IV-64) 
 
 
which allow us to write (IV-62) in the more compact form 
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where the summation is to be extended to all frequencies including the negative ones. This together with (IV-64) ensures that 
the sum results in a real quantity. 
With this notation the nonlinear polarization can be expanded in a series of ascending powers of the applied field and the 
complex amplitude of its i-component be expressed with the applied fields in a similar manner as the linear component 
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where the coefficient χ(n) is the nth-order nonlinear susceptibility, an (n+1)th-rank tensor, and χ(1) is the second-rank linear 
susceptibility tensor, which was introduced in its simplest, frequency-independent form by Eq. (IV-15). The linear 
susceptibility tensor has – in the most general case – three independent components: in what is called the principal 
coordinate system of the propagation material only the three diagonal elements of χ(1) are different from zero. The MKSA unit 
of the nth-order nonlinear susceptibility is (m/V)n-1. An obvious consequence of the nonlinear response of matter to strong 
light fields is the emergence of induced polarization components at new frequencies  
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where the new frequencies emerge at all possible sums of those of the applied fields (including the negative ones!) 
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This Taylor expansion of the nonlinear constitutive law converges only if terms of increasing order decrease in magnitude. 
We shall now estimate under which conditions this is the case. One might expect that the magnitude of the lowest-order 
correction term P(2) becomes comparable to the linear response PL when the amplitude of the applied field E is of the order of 
the characteristic atomic electric field strength 
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where e is the electron charge and a0 is the Bohr radius, which is the radius of the most-strongly-bound orbit of the electron 
in Bohr’s model of the hydrogen atom. It can be expressed with Planck’s constant   
 and the electron’s mass and charge as 
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yielding for the characteristic atomic electric field strength 
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The ratio of the lowest-order nonlinear to the linear response, or that of two subsequent contributions to the nonlinear 
response can now be expressed as 
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The power series in (IV-66b) can be approximated by the first few lowest order terms when the expansion parameter κ fulfils 
the condition 
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Eq. (IV-73) establishes the range of validity of (IV-66b) and justifies the perturbative description of the nonlinear response of 
matter to an external electric field, hence defining the range of perturbative nonlinear optics.    
 
The intensity of a light wave corresponding to the electric field strength can be obtained by using (IV-34) here for free space 
(n = 1) 
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For intensities substantially lower than 1015 W/cm2, the above perturbative approach generally gives an accurate account of 
nonlinear optical phenomena in atoms with a binding energy comparable to or larger than that of the electron in the ground-
state of hydrogen, approximately 15 eV, (which served as a basis for deriving the above criterion). In condensed matter, the 
binding energy of valence electrons is typically much lower, resulting in ionization and subsequent breakdown at intensity 
levels typically a couple of orders of magnitude lower. Hence the optical breakdown sets a practical limit to reversible 
nonlinear optics in solid materials at intensity levels of the order of 1015 W/cm2.  
 
Note that a 10-Watt laser beam delivered by a powerful continuous-wave laser gives rise to an intensity of  109 W/cm2 when 
focused down to a spot diameter of 1 micrometer. Hence the investigation and exploitation of nonlinear optical phenomena 
usually require not only spatial but also temporal confinement of light energy, i.e. short-pulsed radiation.    
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The implications of the induced nonlinear polarization become apparent by substituting the generalized constitutive law given 
by (IV-61) and (IV-66) into the wave equation. Here we shall use the wave equation derived for the electric field (IV-19) 
rather than those obtained for the potentials (IV-27) simply because the constitutive law relates the polarization vector 
directly to the electric field rather than to the latter auxiliary quantities. Decomposing the induced polarization P  into a 
component scaling linearly and nonlinearly with the strength of the applied fields, PL and PNL, respectively, and assuming – 
for the sake of simplicity – a lossless, dispersionless and isotropic propagation medium, so that the constitutive law for the 
linear component takes the form PL = ε0χE, substitution of (IV-61) into (IV-19) yields in the absence of dc current (J0 = 0) 
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which, by making use of εr  = 1+ χ can be simplified to 
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When the relative permittivity εr does not vary significantly over length scales comparable to the wavelength, the last term in 
(IV-21) can be neglected and we arrive at a more common form of the wave equation for the electric field in the presence of 
an induced nonlinear polarization  
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This equation has the form of a driven (inhomogeneous) wave equation; the nonlinear polarization acts as a source term 
appears on the right-hand side of this equation. In the absence of this source term, the equation admits solutions of the form 
of free waves propagating with a phase velocity c/n where n = εr1/2 is the refractive index of the medium. The nonlinear wave 
equations (IV-76) or (IV-77) together with the constitutive law in the perturbative limit of nonlinear optics provide a powerful 
mathematical framework for the description of a wide range of nonlinear optical phenomena. 
 
 
 
Second-order nonlinear susceptibility χ(2) : second harmonic generation, sum- and difference-frequency mixing, 
optical parametric amplification 
 
The second-order nonlinear susceptibility χ(2)  is nonvanishing if and only if the medium is noncentrosymmetric and gives rise 
to a number of important nonlinear optical effects. 
 
 
 
Second-harmonic generation 
 
Consider an intense light wave of frequency ω1 propagating in the z direction and with its electric field polarized along the x 
axis 
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where the wave vector has the magnitude k1 = ω1n(ω1)/c. The second-order nonlinear polarization induced along the x axis 
at a frequency ω2 = 2ω1, according to (IV-66b), given by 
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Substituting (IV-79) into the wave equation introduces a polarization wave carried at a frequency ω2 and with a wave vector 
of magnitude 2k1. This polarization wave will generate an electric field wave  
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with a wave vector of magnitude k2 = ω2n(ω2)/c and at a frequency ω2 = 2ω1, i.e. at the second harmonic of the input light 
wave E1. Because κ << 1 below the ionization (optical breakdown) threshold, the amplitude of the induced polarization wave 
is typically very small. Consequently, the electric field wave driven by this polarization wave can build up and attain a 
sizeable amplitude and intensity only over an extended propagation length L >> λ. The coherent buildup of the output wave 
is generally severely compromised by a phase mismatch between the harmonic wave source wave and the harmonic wave 
Δk = k2 - 2k1 = ω2 [n(ω2)- n(ω1)]/c, which is a direct consequence of the frequency dependence of the refractive index. For the 
growth of the output wave with the propagation distance L the wave equation (IV-77) yields (Exercise) 
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with the output intensity scaling as   
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The intensity of the harmonic wave stops growing at  Lc = π/Δk, also referred to as the coherence length of the harmonic 
generation process. Beyond this propagation length the harmonic emission produced by the induced dipoles adds 
destructively to the accumulated harmonic wave and decreases its amplitude and intensity.  
 
Due to the frequency-dependence of the refractive index – briefly, dispersion – Δk is always nonzero if the electric wave 
driving the polarization wave and the new wave are polarized along the same direction. However, the anisotropy of crystals 
can be utilized to circumvent this problem. By inducing the polarization wave orthogonally to the electric field vector of the 
driving wave upon exploiting a component of the nonlinear susceptibility tensor χijj(2) so that  i ≠ j the polarization wave and 
the harmonic wave will propagate with a wavevector 2k1 = ω2nj(ω1)/c and k2 = ω2ni(ω2)/c, respectively. Because the refractive 
indices nj(ω1) and ni(ω2) are to be taken for different polarization directions in an anisotropic crystal, they can be equal in 
spite of dispersion, resulting in Δk = 0, called phase matching. 
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Phase-matched second harmonic generation is an important technique for converting the coherent radiation of lasers to 
shorter wavelength radiation. With intense ultrashort (nano- to picosecond) light pulses conversion efficiencies up to 80% 
can be achieved.    
     
 
Sum-frequency generation 
 
For two different waves of frequencies ω1 and ω2  the second-order polarization response may also result in efficient 
generation of radiation at ω3 = ω1 + ω2 , if the wave vector k1 + k2 of the polarization 
wave 
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is matched to that of the output wave of ω3 by exploiting crystal anisotropy. Here χeff(2) stands for the effective susceptibility 
for the selected input-wave and output-wave polarizations including also summations over permutations of the input fields 
according to (IV-66b). 
  
 
Difference-frequency generation and parametric amplification 
 
Consider the case of two input waves at frequencies ω3  and ω1  such that ω3 > ω1 and let us induce 
the polarization wave 
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which drives a third wave at the difference frequency ω2 = ω3 - ω1 
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We can now distinguish two distinctly different operation regimes.  
 
IF1I ≈ IF3I → difference-frequency generation 
When the two input waves are comparable in strength, phase-matched difference-frequency mixing results in the efficient 
build-up of the wave at ω2 with energy being coupled from both input waves into the new driven wave in a balanced manner, 
similarly to the power coupling in sum-frequency generation.  
 
IF1I << IF3I → optical parametric amplification  
When the wave of ω3 is much more intense than that of ω1, after an initial buildup of the wave of ω2 this becomes 
comparable in strength to that of frequency ω1. As a consequence, together with the strong (pump) wave at ω3 it creates a 
polarization wave  
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at ω1 = ω3 – ω2. If the wave mixing process is phase-matched this polarization wave drives and boosts the power of the ω1 
wave in the same way as the polarization wave P2 drives and builds up the ω2 wave. Consequently, the strong ω3 input wave 
serves as a pump for building up the ω2 wave and amplifying the weak input wave at ω1 simultaneously. The latter process is 
referred to as optical parametric amplification (often abbreviated as OPA) and is a powerful technique for the efficient 
amplification of either broadband (i.e. ultrashort-pulsed) or tunable laser radiation (ω1) by means of an energetic laser pulse 
(ω3).  
 
 
Second-order nonlinear susceptibility χ(2) : phase and amplitude modulation and switching of light by means of the 
electro-optic effect  
 
 
A second-order nonlinear polarization induced by an optical (high-frequency, ω1) and a static (dc) electric field  
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oscillates at the same frequency ω1 as the linear polarization, hence the two components can be combined to a single 
polarization wave 
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of frequency ω1 and the second-order contribution makes a small contribution to the refractive index  
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that is dependent on the static field Edc. Here the coefficient reff is the respective linear electro-optic coefficient (depending on 
the direction of Edc), the defining equation of which is Δηij = rijk Ek, where the tensor ηij  = (1 + χ(1))-1ij  is called the 
impermeability tensor1. In the coordinate system, where the impermeability tensor is diagonal, its principal values are ηi = 
1/ni2 = 1/(1 + χ(1)ii), where i = x, y, or z. The impermeability tensor is very useful in describing light wave propagation through 
anisotropic media. The prime in (IV-89) indicates that the linear electro-optic (or Pockels) effect may – depending on the 
crystal symmetry – have rotated the principal axes and i’ denotes the new principal axis.  
 
The electro-optic effect provides the most efficient and most widely-used means of modulating the phase and the amplitude 
of light. Let’s consider the specific case of a KDP crystal with nx = ny = no (called the ordinary index) and nz = ne (called the 
extraordinary index). By applying a dc field Ez along the z axis the principal coordinate system of the crystal is rotated about 
this axis by 45 degree, yielding the refractive indices for light polarized along the new x’ and y’ axes 
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1 For more details, see e.g. A. Yariv, P. Yeh, Optical waves in crystals, John Wiley & Sons, 1984. 
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where for rxyz = ryxz often the contracted notation r63 = rxyz = ryxz is used. With this contracted notation, the phase shift induced 
by the applied voltage to a light wave propagating along the z axis with its electric field vector polarized along the  induced 
birefringence axes x’ and y’ can be written as 

where for rxyz = ryxz often the contracted notation r63 = rxyz = ryxz is used. With this contracted notation, the phase shift induced 
by the applied voltage to a light wave propagating along the z axis with its electric field vector polarized along the  induced 
birefringence axes x’ and y’ can be written as 
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Phase modulation of light  
 
We can now exploit this electro-optic effect for modulating the phase of a light beam Ein = Fcosωt polarized e.g. along the x’ 
axis as shown in Fig. IV-5 at the output as  
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       Fig. IV-5 
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Amplitude modulation and switching of light 
 
If the electro-optic crystal is sandwiched between crossed polarizers parallel to the x and y axes, respectively (i.e. rotated by 
an angle of 45 degree with respect to the induced birefringence axes x’ and y’) the electro-optic effect can be used for 
amplitude modulation and of light transmitted through this apparatus (Fig. IV-6).  In this case the input wave Ein = Fcosωt is 
decomposed into two equally strong components polarized linearly along the x’ and y’ axes, the latter of which suffers a 
phase retardation with respect to the former:    
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where V= EzL is the applied voltage and  
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is the voltage causing a phase retardation of π between the two waves in the crystal and is referred to as the half-wave 
voltage. The half-wave voltage for a z-cut KDP crystal at λ0 = 800 nm is about 11.7 kV.  
For Γ = π the input polarization is rotated by 90 degree and the wave is completely transmitted through the second polarizer.  
Switching on and off the half-wave voltage changes the transmittivity of the system between 100% and zero, resulting in 
switching of a light wave. For modulating the amplitude of the transmitted wave (instead of switching it on and off), we can 
apply a bias voltage Vbias = Vπ/2  together with the modulation voltage V(t). This results in modulation of the transmittivity and 
hence of the amplitude of the transmitted wave as shown in Fig. IV-7.  
 

 

 
                     Fig. IV-6 
 

 
 
                            Fig. IV-7 
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Fig. IV-8 shows a completely different implementation of amplitude modulation and switching based on the electro-optic 
effect in an integrated-optic Mach-Zehnder interferometer.  
 

 
 
                                                  Fig. IV-8 
 
 
 
Third-order susceptibility χ(3) : nonlinear index of refraction, self-phase modulation, self focusing of laser light  
 
 
One of the most obvious implications of the third-order term in the Taylor expansion of the nonlinear polarization is the 
emergence of the third harmonic ω3 = 3ω1 of the input wave (ω1) driving the polarization wave. However, the practical 
importance of this effect is rather limited, because the same radiation can be much more efficiently produced by cascading 
two phase-matched χ(2)  processes: second harmonic generation to yield ω2 = 2ω1  and sum-frequency mixing of the ω2 and 
the remaining part of the fundamental at ω1 to result in ω3 = ω2 + ω1 = 3ω1. All the more important is another χ(3)-based 
nonlinear effect which gives rise to an intensity-induced change of the refractive index by mixing three waves of frequencies 
ω, ω, and -ω. 
 
Consider a light wave propagating along the z axis with its electric field vector polarized along the x axis as given by  
 

( )1 ˆ ˆ( , ) . . ( ) . .
2

i kz t i t
x xt E e c c E e−ω − ω= + = ωE r x x  c c+                                               (IV-95) 

 
 
Where, for the sake of simplicity, the coordinate system is aligned to be equivalent to the principal axes of the (possibly 
anisotropic) propagation medium. The constitutive law (IV-66b) along with the intrinsic permutation symmetry χ(3)xxxx(ω,ω,-ω) 
= χ(3)xxxx(ω,-ω,ω) = χ(3)xxxx(-ω,ω,ω) yields for the polarization wave at the same frequency and polarized along the same (x) 
direction  
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The total (linear + nonlinear) polarization density induced along the x axis is then given by  
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The expression within the brackets may be regarded as a generalized (complex) susceptibility with the field-induced 
contribution giving rise to a small and generally complex correction of the refractive index, the real (Δn) and imaginary 
(Δα/2k0) part of which can be derived from 
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as 
 
 

( ) 2 2(3) 2
2

0

3 Re
8 2xxxx x x

n nn E E
n Z

Δ = χ = = n I                                                             (IV-99a) 

 
 

( ) 2 2(3) 2
2

0

3
4 2xxxx x x

nlm E E
nc Z

αω
Δα = χ = = α I                                                       (IV-99b) 

 
 
and 
 

( ) ( )(3) (3)0
2 2 2

0

3 3Re Re
4 4xxxx xxxx
Zn
n n c

= χ = χ
ε

                                                              (IV-100a) 

 
 

( ) ( )(3) (3)0
2 2 2 2

0

3 3
2 2xxxx xxxx

Z lm lm
n c n c
ω ω

α = χ = χ
ε

                                                        (IV-100b) 

 
 
are referred to as the nonlinear-index coefficient (often also: nonlinear refractive index) and two-photon absorption coefficient 
of the propagation medium. Eqs. (IV-99) reveal that the real part of χ(3)xxxx(ω,ω,-ω) introduces a small change of the refractive 
index that scales with the intensity of the light wave. This phenomenon is known as the optical Kerr effect. The imaginary 
part of χ(3)xxxx(ω,ω,-ω) on the other hand gives rise to a small absorption coefficient that is proportional to the light intensity, 
consequently the amount of absorbed light in unit propagation length scales with the square of the light intensity, which is 
indicative of two photons inducing the respective atomic transitions. This latter process is likely only if the frequency of the 
incident radiation is close enough to bandgap of the transparent propagation medium so that this bandgap can be overcome 
by two photons. For large-gap materials such as quartz or fused silica (bandgap ~ 10 eV) two-photon absorption requires 
ultraviolet photon energies and hence the imaginary part of χ(3)xxxx(ω,ω,-ω) vanishes in the visible spectral range. 
 
For large-gap materials at intensity levels safely below the damage threshold 
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The refractive index can only be changed in the fourth digit behind comma even with intense laser light. 
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Nevertheless even this small change results in the accumulation of a substantial phase shift over a relatively short 
propagation 
 
 

Δϕnonlinear = k0 n2IL = 2πn2I 
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λ
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e.g. Δn = 10-4 implies a nonlinear phase shift Δφnonlinear = 2π for a propagation distance as short as L = 8 mm for λ = 800 nm.  
In a pulsed laser beam, the intensity is dependent on both time and the radial coordinate, resulting in a temporally and 
radially dependent nonlinear phase shift. Former leads to self-phase modulation of the propagating laser pulse whereas the 
latter implies self focusing.  These effects are often undesirable and – if uncontrolled – may lead to severe problems such as  
damage to optical components in high-power laser systems.     
 
This nonlinearity is of electronic origin, occurs as the result of the nonlinear response of bound electrons to an applied optical 
field. Because the light frequency in a transparent wide-gap material is far from resonances, the response is small but 
extraordinarily fast. The characteristic response time of this process is the time it takes for the electron cloud around the 
nucleus to become slightly distorted (giving rise to a small dipole moment induced by the field) in response to an applied 
optical field. This response time can be estimated as the oscillation period of the electron density in an excited atom. This 
can be assessed by noting that the modulus square of the wavefunction of the electron occupying its ground state (of energy 
E0) and with some finite probability its first excited state (of energy E1) takes the form  
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where ψ0 and ψ1 are the wavefunctions of the electron in the ground and the first excited state. The oscillation period is 
determined by the energy gap ΔE = E1 - E0 between the ground state and the first excited state as  
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Where 1 femtosecond = 1 fs = 10-15  s. For quartz, with a bandgap of ΔE ≈ 10 eV we obtain a response time of  400 
attoseconds  (1 as = 10-18 s) for the nonlinear index of refraction (as well as for other nonlinearities of electronic origin). This 
response time amounts to a tiny fraction of the field oscillation period of visible light, hence much faster than the fastest 
changes in the cycle-averaged intensity of optical radiation. As a consequence, the nonlinear index of refraction of electronic 
origin has a virtually instantaneous response to even the fastest changes of optical radiation. This fact provides the basis for 
the operation of state-of-the-art ultrashort-pulse (femtosecond) laser technology (see Chapter VIII: Ultrafast optics, Photonics 
II).    
 
  


