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IV. Electromagnetic optics  
 
Microscopic & macroscopic fields, potentials, waves 

 
Heinrich Hertz’ (1857-1894) groundbreaking experiment in 1885 revealed that light is electromagnetic radiation, the 
theoretical laws of which has been previously introduced by James Clerk Maxwell (1831-1879) based on the experiments of 
Michael Faraday (1791-1867). Optical frequencies occupy a band of the electromagnetic spectrum that extends from the 
infrared through the visible to the ultraviolet (Fig. IV-1). 
 

 
                  Fig. IV-1 
 
 
Electromagnetic radiation propagates in the form of two mutually-coupled vector waves, an electric-field  wave and a 
magnetic-field wave. The wave optics theory of light addressed in Chapter III is an approximation of the electromagnetic 
theory describing light phenomena in terms of a single scalar function, the wavefunction. This approximation holds for 
paraxial waves in the absence of polarization effects related to the direction of the electric and magnetic fields. A further 
simplification leads to ray optics, as discussed before. Thus electromagnetic optics encompasses wave optics, which, in turn, 
encompasses ray optics. In this chapter we review the basics of electromagnetic theory that are relevant to optics. 
 
 
Postulates of the electromagnetic theory of light 
 

• Light is electromagnetic radiation described by two related vector fields, the electric and 
magnetic fields. 

• The propagation of light and its emergence due to (microscopic) electric charge and current are 
described by Maxwell’s equations. 

• The interaction of light with charged particles is governed by the Lorentz force and preserves 
energy and momentum.  

 
Maxwell’s equations (for time-dependent fields & in the absence of magnetic dipoles) 
 

FARADAY’S LAW                                   ∇ ∂
× =

∂
( , )  - ( , )

t
tE r B r t                                            (IV-1) 

 

AMPÈRE’S LAW (GENERALIZED)       
μ0

1
∇

∂
× = ε
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t
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COULOMB’S LAW                                            ∇ 
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1( , ) ( , )t = ρ
ε

trE r                                                 (IV-3) 
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ABSENCE OF FREE MAGNETIC POLES      ∇ ( , ) 0t =B r                                                                     (IV-4) 

e-

ion 
ectric field distribution and the charge distribution. Eq. (IV-4) is the mathematical manifestation of the absence 

f free magnetic monopoles. Eqs. (IV-3) and (IV-4) are also known as Gauss’s law for the electric and magnetic field, 

qs. (IV-1) to (IV-4) are also referred to as the microscopic Maxwell’s equations, because in this form the charge density 
ρ(r,t) and the current density J(r,t) incor
 

 
 

where the constants ε0 and μ0  = 1/ ε0c2 are called the electric permittivity and magnetic permeability of free space, 
respectively.  Eq. (IV-1) is the differential form of Faraday’s law of induction, describing the creation of electric field by a tim
varying magnetic flux. Eq. (IV-2) is the differential form of the generalized Ampére’s law, which describes the creation of an 
induced magnetic flux due to charge flow. Eq. (IV-3) is the differential form of Coulomb’s law, which describes the relat
between the el
o
respectively.  
 
E

porate all microscopic contributions 

( , ) [ ( )]t qα α
α

ρ = δ −∑r r tr                                                                                                                   (IV-5a) 

 
 

α α α= δ −∑( , ) ( ) [ ( )]t q tJ r v r r
α

t                                                                                                (IV-5b) 

g a charge qα, position rα(t), and velocity vα(t), irrespective of 
hether the motion of the particles are induced by the external fields or by other excitations. Hence  ρ(r,t) and J(r,t) may 
rve either as the source of radiation or be induced by it. 

The Newton-Lorentz equation  
 

 
related to the presence and motion of each particle α, havin
w
se
 
 

α 2 α α α α α α= = + ×
2

( ) [ ( ) ] ( ) [ ( ) ]dm t q t ,t q t t ,tr E r v B r                                                   

   (IV-6) 

netic component of the Lorentz force. It also allows to derive the physical units of 
e field strength from those of the length [meter], mass [kilogram], time [second], and the electric charge [Ampere x second 

ere           1 V =  1 kg m2 s-3 A-1  

ith these units the electric permittivity (also called the dielectric constant) and magnetic permeability of vacuum, can be 

 ≈ 8.85 x 10-12 As/Vm                        μ0 ≈ 1.26 x 10-6 Vs/Am                         

onservation laws, field energy, field momentum, Poynting vector 

From (IV-2) and (IV-3) we obtain 
 

F
dt

 
 
 
describes the dynamics of each particle α, having a mass mα, charge qα, position rα(t), and velocity vα(t), under the influence 
of electric and magnetic forces exerted by the field. Eq. (IV-6) serves for the definition and measurement of the field 
strengths by means of the electric and mag
th
= Coulomb] in the MKSA system of units.  
 
Unit of electric field strength E:  Volt/meter   [V/m],      wh
 
Unit of magnetic-flux density (induction) B:   [Vs/m2]       
 
W
expressed as  
 
ε0
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∂
ρ = −∇

∂
( , ) ( , )t

t
r J tr  (IV-7) 

 
 
the equation of continuity, which expresses the local conservation of electric charge. Hence Maxwell’s equations warrant the 
conservation of electric charge. The  expression of ρ and J as a function of the particle variables in (IV-5) can be shown to 
satisfy (IV-7).  
 
A continuity equation analogous to (IV-7) for the energy – after having postulated energy conservation for the interaction of 
electromagnetic fields with matter (see Postulate #3) – allows to introduce the field energy density and energy flow rate by 
comparing the new equation with (IV-7). Such a continuity equation for the energy can be derived from Maxwell’s equations 
by using the Lorentz force for describing field-matter interaction. The Lorentz force given by Eq. (IV-6) implies that for particle 
α, the rate of work done by an external electromagnetic field is qαvαE. For a current density J Eq. (IV-5b) yields that the rate 
of work done by the fields per unit volume is JE. By using (IV-2) we can express this as  
 
 

∂
ε ∇× − ε

∂
2

0 0 = (  )c
t

JE E B E E                                                                 (IV-8) 

 
By employing the vector identity 
 
 

∇(E × B) = B(∇× E) − E(∇× B)                                                                                                 (IV-9) 
 
 
and making use of (IV-1) we obtain  
 
 

∂ ∂⎛ ⎞= −ε ∇ × − ε +⎜ ∂ ∂⎝ ⎠
2 2

0 0(   )c
t t

JE E B E E B B⎟c                                                        (IV-10) 

 
which can be rewritten as 
 
 
∂

ρ = ∇
∂

( , )  -  (r,t ) -  (r,t )  (r,t )E t
t

r S J E                 (IV-11) 

 
where  
 

2 2 2
0

1( , ) ( )
2E tρ = ε +r E c B                                                                                                                (IV-12) 

 
and  
 

2
0( , )t c= ε ×S r E B                                                                                                                                      (IV-13) 

 
 
If we now require conservation of the total energy of the electromagnetic field + matter, a comparison of (IV-11) with (IV-7) 
yields that ρE must stand for the energy stored in the electromagnetic fields per unit volume (energy density) and the vector S 
quantifies the direction and amount of field energy flow rate per unit area. It is called the Poynting vector.    
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In a similar way, we can derive a continuity equation for the momentum of the field-matter system. By the same procedure, 
requiring momentum conservation and comparing the equation with (IV-7) yields for the momentum density of the 
electromagnetic field: 
 
                                                                                                                                   (IV-14) 0( , )t = ε ×p r E B
 
 
Macroscopic (averaged) fields versus microscopic fields, Maxwell equations for macroscopic fields 
 
In matter, charge is not evenly distributed, rather, it is concentrated in point-like particles. These particles often undergo rapid 
thermal motion. As a consequence, the microscopic fields produced by these charges vary extremely rapidly in space and 
time. The spatial variation occur over distances of the order of 10-10 m or less, whereas the temporal fluctuations evolve 
within 10-14 – 10-13 s (10 - 100 femtoseconds) owing to nuclear vibrations and within 10-17 - 10-16 s (10 – 100 attoseconds) 
owing to the motion of electrons. Macroscopic measuring devices usually average over much longer intervals in either space 
or in time. To predict the result of such a measurement, it is sufficient to average the microscopic fields spatially over a 
volume containing a large number of atoms (this applies well for ), because over macroscopic distances the 
microscopic motions are uncorrelated. All that survive are oscillations driven by the external fields. Electromagnetic 
phenomena can be well described in terms of macroscopic field variables (averaged over atomic length scales) as long as 
the wavelength of the incident light is longer and field quantities sensed by macroscopic measuring instruments 
are of interest. X-ray diffraction clearly does not fall into this category. Also, individual molecules in dense matter may feel a 
field different from the macroscopic field even in the long-wavelength limit, because the polarization of neighbouring 
molecules gives rise to an internal field  in addition to the average macroscopic field E  resulting in a total field at 
the molecule.

−≈3 24
0 10L 3m

m≈0 10L n

iE + iE E
1  

 
Following the derivation of J. D. Jackson,2 the spatially-averaged microscopic charge and current density can be expanded 
into a series of multipoles 
 
 
                                                                                                                                                                     

0, ) , )( (t −ρ = ρr r t ∇P(r,t) + ∇(∇Q) + ....,   where  ∇Q = ij

j j

Q
r

∂

∂∑               (IV-a) 

 
 
 
 

+
∂ ∂

= + ∇× − ∇ +
∂ μ ∂0

0
, ) , ) 1( ( ( , ) ....       t t t

t t
J r J r P r M Q                                          (IV-b) 

 
 
 
where ρ0 is the (averaged) macroscopic charge density 
 
 
 

0
(free) (molecules)

, )( ( ) ( )n n
n

t q qα α
α

=ρ δ − + δ∑ ∑r r r r − r

                                                

                                                                   (IV-c) 

 
 
 
 

 
1 J. D. Jackson, Classical Electrodynamics, Third Edition, 1999, John Wiley & Sons, Inc, p. 160. 
2 J. D. Jackson, Classical Electrodynamics, Third Edition, 1999, John Wiley & Sons, Inc, pp. 248-258. 
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J0 is the macroscopic current density3 
 
 

0
(free) (molecules)

, )( ( ) ( )n n n
n

tJ q qα α α
α

= δ − + δ −∑ ∑r v r r v r r                                                     (IV-d) 

 
 
P is the macroscopic polarization  
 
 

(molecules)
, )( ( )n n

n
t = δ −∑P r p r r                                                                                                           (IV-e) 

 
 
M is the macroscopic magnetization 
 
 

(molecules)
, )( ( )n n

n
t = δ −∑M r m r r                                                                                                               (IV-f) 

 
 
Q is the macroscopic quadrupole density 
 
 

(molecules)
, ) 1( ( ) ( )

6ij n ij n
n

tQ Q= δ −∑r r r

q

                                                                                                (IV-g) 

 
 
and the molecular multipole moments are given by 
 
 

MOLECULAR CHARGE                                 
( )

n
n

q α
α

= ∑                                                                          (IV-h) 

 
 

MOLECULAR DIPOLE MOMENT                    
( )

n n
n

qα α
α

= ∑p r                                                                (IV-i) 

 

MOLECULAR MAGNETIC MOMENT                 
( )

( )
2 nn n

n

qα
αα

α

= ×∑m r v                                          (IV-j) 

 
 

MOLECULAR QUADRUPOLE MOMENT4      
( )

( ) 3 ( ) ( )n ij i n jn
n

Q qα αα
α

= ∑ r r                                   (IV-k) 

                                                 
3 The subscript “0” will be omitted from ρ0 and J0 in later discussions, for simplicity. 
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Coordinates for the nth molecule. The origin O’ is fixed in the molecule (usually it is chosen at the centre of mass). The αth 
charge has coordinate rαn relative to O’, while the molecule is located relative to the fixed (laboratory) axes by the coordinate 
rn.   
 
 
For the convenient description of electric and magnetic phenomena, the macroscopic displacement vector 
 
 

= ε + −0( , ) ( , ) ( , )t tD r E r P r t ∇Q( , )tr  + …..                                                                                     (IV-m) 
 
 
and the macroscopic magnetic field  
 
 

= −
μ μ0 0

1 1
+( , ) ( , ) ( , ) ...t t tH r B r M r                                                                                                          (IV-n) 

 
 
have been introduced as auxiliary quantities. The contributions beyond P and M are almost invariably negligible. 
 
 
 
Optically-induced charge displacement, generalized polarization, electric dipole approximation, constitutive law 
 
 
Landau and Lifshitz5 have pointed out that it is not really meaningful in the optical region to express J and ρ in terms of 
multipoles as given by (IV-a) and (IV-b), because the usual definition of multipoles are unphysical. It is more expedient to 
write the macroscopic current as 
 

                                                                                                                                                         
4 The molecular quadrupole moment has a nonzero trace according to this definition. Making it traceless introduces an additional term in 
the expression of the macroscopic charge density (see p. 257 in J. D. Jackson, Classical Electrodynamics, Third Edition, 1999) 
 
 
 
.  
5 L. D. Landau and E. M. Lifshitz, Electrodynamics in Continuous Media, Pergamon Press, New York, 1960, p. 252. 
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∂
= +

∂0 gen, )( ( , )t t
t

J r J P r                                                                                                                           (IV-p) 

 
 
which, with (IV-7), implies   
 
 

ρ = ρ − ∇0 gen, )( ( ,t) tr P r                                                                                                                        (IV-q) 

 
 
where Pgen is referred to as the generalized electric polarization incorporating all contributions to a macroscopic displacement 
of charges driven by the optical fields with J0 and ρ0 representing a possible dc current density and a static charge density 
respectively. Note that Pgen also includes possible contributions of free charges (electrons), the magnitude of the oscillating 
displacement of which at optical frequencies does not substantially differ from that of their bound counterparts. Eq. (IV-q) 
ensures that the current induced upon polarizing the medium with the field obeys continuity. With (IV-p,q) and (IV-7) the 
Maxwell equations take the form  
                  

                        ∇ ∂
×

∂
=( , ) + ( , ) 0

t
t tE r B r                                                                                        (IV-1’) 

 

                
μ0

1
∇

∂ ∂
× ε =

∂ ∂0 0( , ) - ( , )  + ( , ) gent t
t t

B r E r J P r t

) = ρ0

                                               (IV-2’) 

  

                            ∇ (                                                                                      (IV-3’) ε0 ( , )+ ( , )gent tE r P r
 
                                               ∇ ( , ) 0t =B r                                                                                                    (IV-4’) 
 
 
 
The difference between the generalized electric polarization Pgen  and the electric-dipole polarization P is that Pgen is a 
nonlocal function of the electric field, whereas P is local. For optical frequencies and moderate field strengths, the electric-
dipole contribution dominates in (IV-a) and (IV-b) and the magnetic dipole and higher-order multipoles can be neglected 
(Exercise)6 so that Pgen = P, which we refer to as the electric dipole approximation. In what follows, we assume electric 
dipole approximation, unless otherwise stated. 
 
If a light wave propagates in matter, its electric field tends to induce microscopic dipole moments. The density of these 
induced atomic or molecular dipoles aligned with the electric field E(r,t) is referred to as the macroscopic polarization vector 
P(r,t). In the case of a linear and instantaneous response (which is a good approximation in the limit of low electric field 
strengths and far from absorption lines, i.e. resonances, and consequently in the absence of dissipation) the polarization 
vector is related to the electric field by the linear relationship 
 
 

ε= χ0( , ) ( , )tP r E r t

                                                

                                                                                                                      (IV-15) 
 
 
with χ being a second-rank tensor called the electric susceptibility tensor (or briefly dielectric tensor). The connection 
between the polarization and field vector is referred to as the constitutive law. Eq. (IV-15) constitutes the constitutive law for a 

 
6 By using the expressions of the molecular multiple moments given by (IV-i)-(IV-k), show that for r�n /λ << 1 and for v�n /c << 
1, the electric-dipole contribution is dominant in the multipole expansion of the spatially-averaged microscopic charge 
densities.   
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medium with linear, instantaneous response. For an isotropic medium, the electric susceptibility tensor becomes a scalar 
quantity χ, implying that the induced dipoles are aligned parallel with the direction of the electric field:   
 
 

0( , ) ( , )t χε=P r E r t                                                                                                                       (IV-16) 
 
 
The macroscopic current and charge densities in (IV-p) and (IV-q) now takes the form   
 

, )( tJ r  = J0 ( , )t
t

∂
+

∂
P r                                                                                                            (IV-17) 

 
and 
 

0( , )tρ =r ρ  −∇P(r,t )                                                                                                                             (IV-18) 
 
 
Replacing now in the continuity equation of energy (IV-10) the microscopic field variables by their macroscopic counterparts 
as well as the microscopic current density by the macroscopic current density as given by (IV-17) and (IV-16), allows to 
obtain the continuity equation for the energy in terms of macroscopic field variables (under the assumptions leading to (IV-
16): 
 
 

∂ ∂⎛ ⎞− ε ∇ × − ε + χ +ε⎜ ⎟∂ ∂⎝ ⎠
2 2

0 0 0 0 = ( ) (1 )c c
t t

J E E B E E B B                                      

(IV-10’)                                                                                                                     
 
 
which – in the convention that the field does work only on the free electrons – leads to the modified expression for the field 
energy density 
 
 

2 2 2
0

1( , ) ( )
2E rtρ = ε ε +r E c B                                                                                                                  (IV-12’) 

 
 
where εr = 1+ χ is called the relative permittivity of the medium. Note that in (IV-10’) the time average of J0E = 0 if E is a 
purely optical field without dc component.   
 
Substituting (IV-17) into (IV-2), differentiating the equation with respect to time and expressing the time derivative of B(r,t) 
with E(r,t) by using (IV-1) we obtain 
 
 

∇ × (∇× E) 
∂ ∂

+ = − μ
∂ ∂

2 2

0 02 2 2
1

c t t
E −P J                                                       (IV-19) 

 
 
whereas substitution of (IV-18) into (IV-3) yields   
 
 
∇(ε0E + P)                                                                              (IV-20) = ρ0
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In the absence of dc current and static charge, by use of well-known vector identities7 Eqs. (IV-19) and (IV-20) result in   
 
 

∇ 
2E (r,t)

2

2 2
( ) ( , )r t

c t
ε ∂

− +
∂

r E r  ∇⎛ ⎞ε
=⎜ ⎟ε⎝ ⎠

( ) ( , ) 0r

r
tr E r∇                                                 (IV-21) 

 
 
where we have permitted a spatial variation of the electric susceptibility χ = χ(r), implying a spatially varying relative 
permittivity εr(r) = 1+ χ(r). If the susceptibility varies in space at a much slower rate than E(r,t), i.e. εr(r) does not vary 
significantly within a wavelength distance, the third term in (IV-21) may be neglected in comparison with the first and we 
obtain the wave equation   
 
 

 
ε ∂

∇ −
∂

2
2

2 2 =( , ) ( , ) 0rt
c t

E r E r t

 

                                                

                                                        (IV-22) 

 
 
A similar equation can be derived for the magnetic component of the light fields. A comparison with (III-1) reveals that n = 
εr1/2 is equivalent to the refractive index postulated in ray optics and wave optics. Now, we understand, why we had to 
postulate n to be a slowly-varying function of r in order for the scalar equation properly describing light wave propagation in 
the framework of scalar wave theory. 
 
 
 
 
Boundary conditions  
 
In optics, we often encounter situations in which the optical properties (characterized by n) change abruptly across surfaces. 
From (IV-1) and (IV-4) follows that the tangential components of the electric field  E and the normal component of the 
magnetic field B, respectively, are always continuous functions of position. From (IV-2) in the absence of free currents 
(including microscopic ones leading to magnetism) and (IV-3) in the absence of free charges it follows that the tangential 
component of B and the normal component of εrE are continuous, respectively.  
 
 
 
 
Vector and scalar potentials, gauge invariance, Lorenz gauge, Coulomb gauge   
 
 
In regions of space, where the refractive index is continuous, light wave propagation is described by solving (IV-21) or – if 
εr(r) varies slowly in space – (IV-22). With the electric field wave known, the magnetic field wave can be determined from  
(IV-1). Here, we introduce, auxiliary field quantities, so-called potentials, which permits an alternative approach and often 
provide a more convenient means of deriving the electric and magnetic fields of light waves from Maxwell’s equations.  
 
Equations (IV-4) and (IV-1) suggest that E and B can be written in the form  
 
 

= ∇×( , )  ( ,t )tB r A r                                                                                                                            (IV-23a) 
 

 
7 ∇× (∇× a) = ∇(∇a) − ∇ 2a 
   ∇a⋅b = a∇b + b∇a 
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∂
= − − ∇Φ

∂
( , ) ( , ) ( ,t )t t

t
E r A r r                                                                                               (IV-23b) 

where A is a vector field, called the vector potential, and φ is a scalar field, called the scalar potential. An obvious benefit 
from introducing A and φ is that Eqs. (IV-1) and (IV-4) are automatically satisfied. Substituting the potentials into (IV-2) and 
(IV-3) and utilizing once again the same vector identity7 yields 
            
 

∂
∇ Φ = − ρ − ∇

ε ∂
2

0

1( ,t ) ( , ) ( , )t
t

r r tA r                                                                  (IV-24a) 

 

⎛ ⎞∂ ∂⎡ ⎤− ∇ = μ − ∇ ∇ + φ⎜ ⎟ ⎢ ⎥∂∂ ⎣ ⎦⎝ ⎠

2
2

02 2 2
1 1A(r,t ) ( , ) ( , ) ( , )t t

tc t c
J r A r r t         (IV-24b) 

 
 
It follows from (IV-23a) and (IV-23b) that E and B are invariants under the following gauge transformation 
 
 

→ = + ∇( , ) '( , ) ( , ) ( ,t) t t t fA r A r A r r                                                                                        (IV-25a) 
 
 
 

( , ) ' ( , ) ( , ) ( , )t t t f
t

∂
φ → φ = φ −

∂
r r r tr                                                                                          (IV-25b) 

 
 
where f(r,t) is an arbitrary function of r and t. The redundancy in the potentials can be reduced by the choice of the gauge 
condition which fixes ∇A (the value of ∇x A is already determined by Eq. IV-23a). The most-commonly used gauge is the 
Lorenz gauge defined by  
 
 

∂
∇ + φ =

∂2
1( , ) ( , ) 0t

tc
A r r t                                                                                                                     (IV-26) 

 
 
It can be proven that it is always possible to find a function f(r,t) in (IV-25) such that (IV-26) will be satisfied for A’ and φ’. In 
the Lorenz gauge, the potential equations take a symmetric form 
 
 

 
⎛ ⎞∂

− ∇ φ = ρ⎜ ⎟
ε∂⎝ ⎠

2
2

2 2
0

1 1( , ) ( , )t
c t

r tr                                                                                                    (IV-27a) 
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2
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02 2
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c t
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which are relativistically invariant, i.e. they keep the same form after a Lorenz transformation. The covariant notation reveals 
this property automatically. With ∂μ = {(1/c)(∂/∂t), ∂/∂x, ∂/∂y, ∂/∂z) and the four-vectors Aμ = { Φ/c, Ax, Ay, Az} and Jμ = { cρ, 
Jx, Jy, Jz} associated with the potential and the current, respectively, Eqs. (IV-18) and (IV-19) take the form ∑ ∂μ Aμ = 0 and 
∑ ∂ν∂νAμ = (1/ε0c2)Jμ, respectively. 
 
For a medium with refractive index n = [1 + χ(r)]1/2 that varies slowly in space and in the absence of dc current and static 
charges, by use of (IV-16), (IV-17), (IV-23b) and (IV-24b) we obtain the wave equation for the vector potential 
 

∂
∇ −

∂

2 2
2

2 2 =( , ) ( , ) 0nt
c t

A r A r t                                                                        (IV-28) 

 
using the gauge  
 

∂
∇ + φ =

∂

2

2 0n
tc

A                                                                                          (IV-

29) 
 
The standard procedure for describing light wave propagation is now as follows. First we solve the wave equation (IV-28), 
then we substitute the solution A(r,t) into (IV-29) to calculate φ(r,t) and with the potentials known, the electric and magnetic 
fields can be determined by using (IV-23).  
 
For transverse electromagnetic fields it is often useful to introduce the Coulomb gauge 
 
 

∇A(r,t) = 0                                                                                                                                                             (IV-30a) 
 
 
 
(IV-24a,b) simplify to 
 
 

∇2φ  
0

1 ( , )t= − ρ
ε

r                                                                                                                                           (IV-30b) 

 
 
 

2
2

2 2 2
1 1
c t c t

A⎛ ⎞∂ ∂
− ∇ +⎜ ⎟∂ ∂⎝ ⎠

 ∇φ 0 ( , )t= μ J r                                                                                 (IV-30c) 

 
 
According to Helmholtz’s theorem,8 any vector fields can be written as a sum of two components, one of which has zero 
divergence and one of which has zero curl. For the current density, the sum is written  
 
 
                                                                                                                                                            (IV-30d) T= +J J JL

                                                

  
 
where  
 
 

 
8 G. B. Arfken, H. J. Weber, Mathematical Methods for Physicists, Fourth Edition, Academic Press, San Diego, 1995. 
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∇ = 0
T

J and                                                                                                     (IV-30e) ∇× = 0LJ
 
JT is called the transverse or solenoidal component and JL is the longitudinal or irrotational component. The same definition 
and nomenclature applies to the other field vectors. For example, it is evident that the magnetic field B is determined by the 
transverse part of the vector potential, AT. The Coulomb gauge definition in (IV-30a) identifies A as wholly transverse, with 
the longitudinal part completely transformed away. With the use of these definitions and the assumption of the Coulomb 
gauge condition (IV-30a), the complete field equation (IV-30c) is readily separated into its transverse and longitudinal parts 
as 
 
 

2

02 2
1

Tc t
A

⎛ ⎞∂
− ∇ = μ⎜ ⎟∂⎝ ⎠

J                                                                                                                           (IV-30f) 

  
 
and  
 
 
 

02
1

Ltc
J∂

∇Φ = μ
∂

                                                                                                                                           (IV-30g) 

 
 
 
The vector potential is thus determined by the transverse part of the current density, whereas the scalar potential satisfies 
both Eqs. (IV-30b) and (IV-30g), and its elimination from the two gives 
 
 

∂
∇ = − ρ

∂L t
J                                                                                                                                                      (IV-30h) 

  
 
 
which is the equation of charge conservation. The electric field can also be divided into transverse and longitudinal parts: 
 
 
  

∂
= − = −∇Φ

∂
andT t

E A EL                                                                                             (IV-30i) 

  
 
 
whereas the magnetic field B is entirely transverse. The great advantage of the Coulomb gauge for the radiation field and its 
interaction with charges and currents lies in the clean separation of the field equations into two distinct sets. It is widely used 
in the quantization of the radiation field. 
 
 
 
Plane-wave approximation, energy density and flow rate (intensity) in a light wave, connection between intensity 
and electric field strength, impedance of free space  
 
 
Well collimated (paraxial) light beams can often – in first approximation – be treated as plane waves, which can be 
expressed as  
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( ) * ( )1 ˆ( , )
2

i kz t i kz t
x xt A e A e−ω − −ω⎡= +⎣A r x ⎤

⎦                                                                                    (IV-30) 

and constitute the simplest solution of the wave equation (IV-28). The dispersion relation k = ωn/c connects the wavevector k 
(oriented along the z axis in the present case) with the oscillation frequency of the wave. Because the divergence of the 
vector potential A(r,t) is zero, (IV-29) yields Φ = 0 and the electric and magnetic field of the plane wave is determined from 
(IV-23) as  
 
 

( ) * ( )1 ˆ( , )
2

i kz t i kz t
x xt E e E e−ω − −ω⎡ ⎤= +⎣ ⎦E r x                                                             (IV-31a) 

 
 

( ) * ( )1 ˆ( , )
2

i kz t i kz t
y yt B e B e−ω − −ω⎡= +⎣B r y ⎤

⎦                                                                             (IV-31b) 

 
 
with the complex field amplitudes given by Ex = iωAx and By = ikAx, yielding the connection of   
 
 
By = (n/c) Ex                                                                                                                                         (IV-31c) 
 
 
between the amplitudes of the magnetic and electric fields. As a consequence, both the electric and the magnetic field of a 
plane wave is polarized in the plane perpendicular to the direction of propagation, such a wave is referred to as a transverse 
electromagnetic (TEM) wave.  
 
It is instructive to calculate the ratio of the magnetic to the electric component of the Lorentz force exerted to a charged 
particle by a plane electromagnetic wave propagating in free space (n = 1): 
 
 
Fb/Fe =  vn/c                                                                                                                                                (IV-31d)  
 
 
where vn is the normal component of the particle’s velocity to the magnetic field vector. From (IV-31d) we conclude that the 
magnetic component of the Lorentz force is negligible compared with the electric component for  v << c  and becomes 
significant only if the charged particle moves at a speed comparable to that of light. This implies that the interaction of light 
with matter can be described in terms of the electric field of a light wave unless the field strength is so high that an electron 
can acquire a kinetic energy comparable to its rest energy (≈ 0.5 MeV) within one oscillation cycle from the light field.                     
 
Analogously to (IV-30) a plane wave with a vector potential of complex amplitude Ay polarized along the y axis also 
constitutes a plane-wave solution of the wave equation. Because (IV-28) is linear, the (vectorial) sum of the two waves of 
complex amplitude Ax  and Ay also constitutes a solution. The vector potential (just as the electric field vector) of the TEM 
plane wave  
 

ˆ ˆcos( ) cos( )x x y yA t A= ϕ − ω + ϕ − ωA x y t                                                 (IV-32) 

 
 
describes an ellipse as a function of time, at any position in space, the wave is said to be elliptically polarized. Important 
special cases (dictated by the ratio of IAxI/IAyI and on the difference φx  - φy) include the linear and circular polarizations.  
 
The time-averaged value of the field energy density given by (IV-12’) of a plane electromagnetic wave can be expressed as  
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The time-averaged Poynting vector [see Eq. (IV-13)] gives the direction and magnitude of the time-averaged electromagnetic 
energy carried by the TEM plane wave through unit cross-sectional area per unit time   
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= ε

S E B z

z
                              

(IV-33b)

 
By making use of the connection (IV-31c) between the electric and magnetic field amplitude, we find that the time-averaged 
field energy is evenly distributed between the electric and magnetic fields: 
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                                                (IV-34a) 

 
 
and the TEM plane wave carries energy along the direction of its wave vector k with a time-averaged  intensity 
   
 

I= ε                                             (IV-34b) = ε = ρ =
2

2 2
0 0

1 1 1
2 2 2

x
x y x E

Ecc E B nc E
n Z

 
 
where  
 

0ZZ
n

=                                                                                                                                                        (IV-35) 

 
is known as the impedance of the medium and 
 
 

0
0

1 120 377VZ
c A

= ≈ π ≈
ε

Ω                                                                                                        (IV-36) 

 
 
is the impedance of free space. This simple formula is analogous to the expression of the power P dissipated by a sinusoidal 
voltage of amplitude U0 applied to a resistance R  
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2
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R

=                                                                                                                                    (IV-37) 

 
 
and with the value of the electric field amplitude IExI substituted in units of V/cm yields the intensity in units of W/cm2.   
 
 
 
Paraxial electromagnetic waves, relation between electromagnetic optics and scalar wave optics 
 
 
The paraxial wave is a wave whose wavefront normals make small angles with the optical axis. There exist electromagnetic 
waves with this property, too. The vector potential of such a wave can be modelled as  
 
 

( )1ˆ ˆ( , ) ( , ) ( ) . .
2

i kz tt u t F e c−ω= = +A r n r n r c                                                                  (IV-38) 

 
 
where n is a unit vector in some direction in the xy plane and F(r) fulfils the paraxial approximation (III-19) and obeys the 
paraxial scalar wave equation (III-20). If so, the paraxial vector wave given by (IV-38) will obey the paraxial vector wave 
equation that can be derived from (IV-28) in the same way as the paraxial scalar wave equation (III-20) was derived from the 
scalar wave equation.  
With the solution (IV-38) we can construct the electric field of a paraxial light wave by first making use of  (IV-29) to yield   
 
 
 

φ = ∇
ω

2

2
c

i n
A                                                                                       (IV-39) 

 
 
 
and then substitute (IV-39) into (IV-23b) 
 
 

⎡ ⎤= ω + ∇ ∇ +⎢⎣ ⎦2
1

⎥( , ) ( ) . .t i c c
k

E r A A                                                                                                      (IV-

40) 
 
 
where  k = ωn/c = 2π/λ. If A is transverse to the z-direction, the electric field vector is polarized mainly in the x-y plane with a 
small longitudinal component arising from the second term in the brackets of (IV-40).  
 
 
 
The paraxial vector wave given by (IV-38) behaves locally as a TEM plane wave carries energy approximately parallel to the 
optical axis, the intensity I ≈ IExI2/2Z.  A scalar wave of complex amplitude U = IExI/(2Z)1/2 may be associated with the 
paraxial electromagnetic wave so that the two waves have the same intensity and the same wavefronts. The scalar 
description is an adequate approximation for treating problems of interference, diffraction and propagation of paraxial waves 
when polarization is not a factor. Take, for example, the Gaussian beam with small divergence angle. Most questions 
regarding the intensity, focusing by lenses, mirrors, interference may be satisfactorily addressed within the frame of scalar 
wave theory. However, U and E do not satisfy the same boundary conditions. Problems involving reflection or refraction at 
boundaries, transmission of light through dielectric waveguides, or questions about the direction of fields naturally call for the 
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electromagnetic theory of light. But electromagnetic theory offers more than just extend the number of light phenomena that 
can be adequately described. It also simplifies the theory of light in that the number of new postulates (beyond those being 
used in other fields) has been reduced. For instance, electromagnetic theory of light sheds light on the origin of the refractive 
index (the polarizability of matter). This opens the way to developing models for calculating the refractive index for any 
material of known composition on the basis of a unified microscopic model of matter. This unified microscopic model will be 
the quantum theory of the electron, to be discussed later. As a further simplification, the intensity of a light wave does not 
have to be postulated (as it was done in scalar wave theory) but follows from requiring energy conservation.   
 
 
 
Electric and magnetic fields of a Gaussian beam 
 
The paraxial vector wave given by (IV-38) describes a Gaussian electromagnetic beam if  F(r) =  FGaussian(r) from (III-44). 
Supposing that the electric field of the Gaussian beam is (dominantly) polarized along the along the x-axis, the vector 
potential of the Gaussian beam can be written as  
 
 

( )
Gaussian 00 00

1 ˆ( , ) ( , ) ( ) . .
2

i kz tA t A t F e c c−ω≡ = +r r x r                                            (IV-41) 

 
 
where  F00(r)  = FGaussian(r), as given by Eqs. (III-44)-(III-48), with the subscripts referring to the lowest-order Hermite-
Gaussian beam. The magnetic field of the beam can be calculated (exercise) by using (IV-23a):  
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where we have ignored ∂F00(r)/∂z compared with kF00(r) in the spirit of the slowly-varying envelope (or paraxial) 
approximation. The magnetic field is polarized primarily along the y axis but has a small z component as dictated by Gauss’s 
law (IV-4). By use of (IV-40) we obtain (exercise) the electric field – to the same degree of approximation – as  
 
       
 

( )00
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( )1 1ˆ ˆ( , ) ( ) . .
2

i kz tFt i F e c
ik x

−ω c∂⎡ ⎤= ω + +⎢ ⎥∂⎣ ⎦

rE r x r z                                  (IV-43) 

 
 
 
Expressions (IV-42) and (IV-43) also apply to higher-order Hermite-Gaussian beams by simply replacing F00(r) with Flm(r) for 
the beam of order l,m in the above expressions. Two plots of E at constant t are shown in Fig. IV-2 for the Gaussian beam 
for two different values of the normalized beam radius w0/λ at the beam waist. 
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2w0  ≈ 1.5λ 
 
Fig. IV-2                                                          
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Microscopic radiation sources, the field of an oscillating dipole  
 
So far we have been concerned with the solution of Maxwell’s equations in the absence of free charge and free currents. 
These constitute the sources of the fields described by the scalar and vector potentials in Eqs. (IV-27). Their temporal 
variation is responsible for electromagnetic radiation. In what follows, we shall focus on the implications of temporally-varying 
charge and current densities localized to a small volume in space. Outside this volume the scalar potential Φ can only be 
static because of the conservation of charge within the volume and hence radiation can only emerge through the vector 
potential being induced by the temporally varying current density in (IV-27b). Using Green’s theorem it can be shown9 that in 
the absence of boundaries, the solution of the inhomogeneous differential equation (IV-27b) takes the form 
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The Dirac δ-function ensures causality. For a harmonically-varying current density  
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the vector potential takes the form 
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with its complex amplitude given by  
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                                                                                           (IV-48) 

 
 
where k = ω/c. Having determined A(r), the complex amplitudes of the emerging harmonically-oscillating magnetic and 
electric fields can be obtained from (IV-23a) and (IV-2)  outside the radiating volume (where J = 0) as  
 
 

= ∇×( )B r A ;      = ∇×
ω

2
( ) ( )icE r B r                                                                                           (IV-49a,b) 

 
 
In what follows we focus on the case of a source smaller than the wavelength: kd < 1, where d stands for the characteristic 
linear size of the source. At a distance IrI = r (from the source) large compared with the wavelength, kr >> 1, which is called 
the far field, we can utilize in the exponent of (IV-48) the approximation   
 

' r− ≈ −r r nr '
                                                

                                                                                                                             (IV-50) 

 
9 J. D. Jackson, Classical Electrodynamics, Second Edition, 1975, John Wiley & Sons, Inc. 
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(where n = r/r is the unit vector aligned with r), whereas in the denominator we may use  
 

' r− ≈r r                                                                                                                                                 (IV-51) 
 
assuming that the source is at the origin of the coordinate system, i.e. r’ < d . The use of these approximations in (IV-48) lead 
to   
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If the size of the source is small compared with the wavelength, the exponent can be expanded in a Taylor series, yielding 
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Equation (IV-53) is referred to as the multipole expansion of localized current distribution. If kd << 1 applies, only the first few 
terms ( the lowest-order multipoles) in the expansion make significant contribution to the radiated fields, because the nth term 
in the series scales with (kd)n. The lowest-order term in (IV-53) is given by 
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and is valid not only in the far field, but anywhere outside the source. 
A simple partial integration yields 
 

[ ]′ ′=− ∇ =− ω ρ∫ ∫ ∫3 3 3( ') ' ' ( ) ' ' ( ') 'd r d r i d rJ r r J r r r                                                             (IV-55) 

 
 
where we have introduced the complex amplitude ρ(r) of the oscillating charge ρ(r,t) = ½ ρ(r)exp(-iωt) + c.c. and utilized that 
it obeys the continuity equation: 
 

iωρ(r) = ∇J(r)                                                                                                                                    (IV-56) 
 
The complex amplitude of the vector potential now takes the form 
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where 
 

3' ( ') 'd rρ= ∫p r r                                                                                                                         (IV-58) 

 
is the complex amplitude of the electric dipole moment vector of the oscillating charge distribution. By using (IV-49) the 
electric and magnetic fields of the oscillating electric dipole can be expressed as 
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The magnetic field is always normal to the r vector, whereas the electric field also has a component parallel to it. In the far 
field 
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( ) ( )c=E r B r n×                                                                                                                                       (IV-60b) 
 
 
both fields are orthogonal to the radial direction as shown in Fig. IV-3.    
 

 

 

p 
 

p 

 
               Fig. IV-3 
 
 
Fig. IV-4 shows the electric field lines of the solution (IV-59b) for the electric dipole moment positioned at the origin of the 
Cartesian coordinate system and aligned parallel with the x axis. The plots (a) and (b) show the field at two time instants, 
separated by Δt = π/2ω. The resemblance to the Gaussian beam solution is unmistakable. This is not a surprise, because 
the Gaussian beam solution is obtained from the radiating dipole solution by applying the paraxial approximation and by 
removing the singularity at the origin by an imaginary translation of the source.       
 
The next higher-order term in the expansion (IV-53) for n = 1 can be shown to result in contribution from the magnetic dipole 
moment and the electric quadrupole moment of the oscillating charge distribution.  
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              Fig. IV-4  


