
III. Wave optics:  Paraxial waves, Gaussian beams 

 
 

III.  Wave optics:   
 
Paraxial waves, Gaussian beams  

Light spatially confined and transported in free space without angular spread would constitute an ideal tool for a number of 
applications. Although the wave nature of light does not permit the existence of such an idealization, well collimated 
(paraxial) light beams are predicted by the Helmholtz equation and – thanks to lasers – can also routinely produced these 
days. 
 
A monochromatic paraxial wave can be written in the form 
 

u (r,t ) = Re [F(r) e 
i(kz -ωt)]   =  ½ F(r) e i (kz -ωt) + c.c.                   (III-39) 

 
with the complex envelope F(r) satisfying the paraxial wave equation (see Eq. III-20) 
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Inspection confirms that the paraboloidal wave (see Eq. III-17a) 
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is a solution of the paraxial wave equation (F1 is a constant). If F(r) given by (III-41) is a solution, a shifted version of it, with z 
– ξ replacing z where ξ is a constant,  
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is also a solution. A ξ  purely imaginary, ξ  = izR  yields the Gaussian beam, which may be considered as the ideal laser 
beam, with the real parameter zR  > 0 known as the Rayleigh range. We decompose the complex function 1/q(z) = 1/(z-izR) 
into its real and imaginary part by defining two new real functions R(z) and w(z), such that   
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R(z) is the wavefront radius of curvature and w(z) measures the beam width. With these new parameters the wavefunction of 
the Gaussian beam takes the form  
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with F0 = iF1/zR and w(z), R(z), and φ(z) given by  
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The mathematical expression of the Gaussian beam contains two parameters, F0 and zR, which are determined from the 
boundary conditions. All other parameters are related to the Rayleigh range zR  and the wavelength λ. 
 
 
Properties of Gaussian beams 
 
Intensity distribution, beam radius, spot size  
 
The optical intensity I(r) = IU(r)I2  of a Gaussian beam can be inferred from (III-44) as 
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Where  P = ∫∫I(r)dA is the total power carried by the beam. At each value of z the radial intensity distribution is a Gaussian 
function explaining the naming. Within any transverse plane the beam intensity takes its peak value on the beam axis and 
drops by the factor 1/e2 ≈ 0.135 at the radial distance r = w(z), which is called the beam radius.  It is minimum at the beam 
waist,  z = 0, where w(0) = w0 is referred to as the waist radius. The beam diameter 2w is called the spot size of the Gaussian 
beam. The beam radius and spot size monotonically increase with increasing distance from the beam waist (Eq. III-45; Fig. 
III-21).  
 

 

           ZR 

   Fig. III-21 
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Confocal parameter, beam divergence 
 
The rate of increase is relatively small for IzI ≤ zR  with w(zR) = 2 w0. If a Gaussian beam is focused down to a waist and 
than expands again (Fig. III-22), the full distance between the 2 w0  beam radii, within which the beam can be considered 
as nearly collimated, the depth of focus, is known as the confocal parameter of the Gaussian beam and given by   
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For IzI >> zR (often referred to as the far field of the beam), the beam radius increases at a nearly constant rate with distance 
from the waist, defining a cone with a half-angle, which – by using (III-45) and (III-48) – can be written as 
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and is called the divergence of the Gaussian beam.  
 

 
         Fig. III-22 
 
 
Phase, Gouy-effect, wavefront 
 
The phase of the Gaussian beam  
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is composed of three terms. The first describes a plane wave. The second adds a phase given by (III-47) which adds a 
phase +π/2 at z = -∞ evolving monotonically into - π/2 at z = +∞. This phase advance, known as the Gouy effect speeds up 
the propagation of the wavefront within the Rayleigh range, giving rise to a phase velocity of the wave higher than the 
vacuum speed of light c (exercise). The third term is responsible for wavefront bending and can be shown (exercise) to 
result in a wavefront curvature equal to R(z) on the beam axis. The wavefront curvature is maximum at z = zR.  
 
 
Aperture transmission – diffraction effects 
 
The fractional power transfer for a Gaussian beam of radius w passing through a circular aperture of diameter 2a (Fig. III-23) 
is given by  
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Fig. III-23 
 
 
 
Even though an aperture with a diameter of d = πw transmits ~ 99% of the incident power, it will cause near-field diffraction 
ripples of the transmitted Gaussian beam with an intensity variation of ΔI/I ≈ ± 17% in the near field (z ≤ zR), see Fig. III-24, 
along with a peak intensity reduction of  ≈ 17% on axis in the far field (z >> zR).   
 
 

 
 
                 Fig. III-24 
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Collimated Gaussian beam propagation 
 
Over what distance can the collimated waist region of an optical beam extend, in practical terms?  
In order to optimize the length of collimated beam propagation we transmit the Gaussian beam from a source aperture of 
diameter with a slight initial inward convergence, as shown in Fig. III-25, so that the beam focuses slightly to a waist with spot 
size w0 at one Rayleigh range out, and then reexpands to the same diameter D two Rayleigh ranges (or one confocal 
parameter) out. For a 99% power transmittance, we choose 0(99%) 2D w wπ π= =  at each end. The collimated 
beam distance is then given by 
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          Fig. III-25 
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Focusing of a Gaussian beam 
 

 
    Fig. III-26 
 
 
If a collimated Gaussian beam with (zR)incident  >> f is incident on a lens of focal length f along the lens axis its wavefront is 
nearly plane in front of the lens and hence the beam gets focused with its  beam waist positioned - to a good approximation – 
in the focal plane of the lens (Fig. III-26). Ray optics, which is the limit of wave optics for λ→0, predicts the spot size in focus 
to be equal to zero. This prediction goes beyond the limit of validity of ray optics and hence invalid. To determine the actual 
beam radius, we set z = 0 at the focal plane of the lens and trace Gaussian beam propagation back to the lens at z = -f , 
where the beam radius is assumed to obey  
 

 
   99% transmission through focusing lens                              (III-55) ( )D w f= π − ⇒
 
 

which, with the help of (III-45) and (III-48) yields (exercise) under the assumption of zR  << f  for the focused beam 
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where F# is the F-number of the lens. This result is one of the important achievements of wave optics: the prediction of the 
focused spot size of an optical beam. In the limit of λ→0, the focused spot size approaches zero, in accordance with the 
prediction of ray optics. 
 
 

 
Transmission of a Gaussian beam through optical components  –  ABCD law 
 
A property that makes the Gaussian beam stand out from the solutions of the paraxial Helmholtz equation is the invariance 
of its Gaussian nature to modifications by a paraxial optical system: if a Gaussian beam is transmitted through a set of 
circularly symmetric optical components aligned with the beam axis, the Gaussian beam remains a Gaussian beam as long 
as the overall system maintains the paraxial nature of the wave.  
 
This invariance to paraxial transformations is mathematically established by the ABCD law: the q-parameters of the 
Gaussian beam,   
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q1 and q2, of the incident and transmitted Gaussian beams at the input and output planes of a paraxial optical system 
sketched in Fig. III-27  
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                              Fig. III-27 
 

and characterized by the (A,B,C,D) matrix [see definition by  (II-8)] are related by1  
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Because the q-parameter identifies the beam radius w and curvature R of the Gaussian beam, this simple relationship, called 
the ABCD law, governs the effect of an arbitrary paraxial system on the Gaussian beam. It is implicit in this law that the 
Gaussian nature of the beam is invariant to the transformation. This law also shows the close connection between optical ray 
theory and Gaussian beam theory, with the link being established by (III-11-14). 
 
 
Optical resonators 
 
The simplest kind of optical resonator consists of just two spherical mirrors aligned with a common optical axis (Fig. III-28). If 
the curvatures of these mirrors and their spacing fulfil the stability criteria to be introduced here and their transverse 
dimensions are large enough so that we can neglect edge-diffraction effects, then these mirrors can trap a Gaussian beam 
that builds up in a laser oscillator. The properties of stable Gaussian resonator modes and the conditions the mirrors need to 
meet for allowing these modes to build up are derived from Gaussian beam theory.  

 

 
 

       Fig. III-28 
 

                                                 
1 For a proof see e.g. A. Yariv, P. Yeh, Optical waves in crystals, John Wiley and Sons, Inc., 1984, p. 33  
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If the radii of curvature of the mirrors in Fig. III-28 are exactly matched to the wavefront radii of the Gaussian beam at those 
points and if the transverse size of the mirrors is substantially larger than the spot size of the beam at the mirrors, each of 
these mirrors will reflect the beam exactly back on itself, with exactly reversed wavefront and direction, trapping thereby the 
beam as a standing wave between the mirrors. The two mirrors thus form an optical resonator for Gaussian modes of 
selected frequency (the eigenfrequencies of the resonator).     
  
In practice, the question is often asked the other way round: given the two-mirror resonator with parameters revealed in Fig. 
III-28 determine the Gaussian beam that will just properly fit between these two mirrors. The equations from which the 
position of the waist and the Rayleigh range of the Gaussian beam can be determined are as follows: 
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2L z z= −                                                                                                                                                       (III-59c) 
 
Before solving the above set of simple algebraic equations, it is customary to define a pair of “resonator g parameters,” g1 
and g2, which have become standard in the theory of laser resonators since the early years of lasers: 
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We can then find the trapped Gaussian beam from Eqs. (III-59a,b,c) and express the unique solution of these equations in 
terms of the g parameters: the Rayleigh length zR, which determines the waist radius w0 
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and the position of the beam waist 
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From these expression it is obvious that real and finite solutions for the Gaussian beam parameters exist only if the g1, g2 
parameters are confined to a stability range defined by  
 
 

1 20 g g≤ 1≤                                                                                                                                                    (III-63) 
 
 
And depicted by the stability diagram in Fig. III-29. 
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        Fig. III-29 
 
 
 
Alternatively, the stability of a two-mirror cavity and the position of the waist of the Gaussian eigenmode of the cavity can be 
determined by a simple graphical method outlined in Fig. III-30. 
 
 
 

 
          Fig. III-30 
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Resonance frequencies 
 
The phase of a Gaussian beam (see III-52) at the resonator mirrors at points on the optical axis (ρ = 0)  
 

1 1 1 2 2 2(0,z ) ( ), (0, ) ( )k z z z k z zφ = −ϕ φ = −ϕ                                                               (III-64) 
 
 
As the mirror surface coincides with the wavefronts, all points on each mirror share the same phase. Upon a complete round 
trip in the resonator, the Gaussian beam suffers a phase change of  
 
 

[ ]round trip 2 1 2 1 2 12 ( ) 2 ( ) ( ) 2 2 , ( ) ( )k z z z z kL z z−Δφ = − − ϕ −ϕ = − Δϕ Δϕ = ϕ −ϕ
              

(III-65)

     
In order that the beam truly retraces itself, leading to a standing wave with a stationary amplitude distribution in the resonator 
(i.e. form a mode of the resonator), the round-trip phase change must be a multiple of 2π: ΔΦround-trip = 2πq, q = 0, ±1, 
±2,….Substituting k = 2πνn/c and Δνax = c/2Ln, the frequencies that satisfy this condition are 
 
 

q axq Δϕ
ν = Δν + Δν

π ax                                                                                                                     (III-66) 

 
 
and called the Gaussian-mode eigenfrequencies of the resonator. The frequency spacing of adjacent (axial) modes is equal 
to the inverse round-trip time of the resonator.     
 
  
 
Hermite-Gaussian beams 
 
It can be shown that  
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is also solution of the paraxial Helmholtz equation, where 
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is known as the Hermite-Gaussian function of order  Here stands for a Hermite polynomial defined by the recurrence  
relation 

.l lH

 
 

1 1 0( ) 2 ( ) 2 ( ), 1,H u u H u H u H H+ −= − =l l ll 2u=                                              (III-69) 
 
 
Several low-order Hermite-Gaussian functions are sketched in Fig. III-31. 
 

 - 39 - 



III. Wave optics:  Paraxial waves, Gaussian beams 

 

 
 

            Fig. III-31 
 
 
A comparison of (III-67) with (III-44) reveals that the phase of the Hermite-Gaussian waves is the same as that of the 
underlying Gaussian wave except for an excess phase -(l+m)φ(z), which is independent of the transverse coordinates and 
hence does not affect the wavefront. Hermite-Gaussian waves have therefore the same wavefronts and are transformed by 
paraxial optical systems in precisely the same manner as the corresponding Gaussian beam. As a consequence, they are 
also modes of the same resonator trapping the corresponding Gaussian mode (with merely the respective eigenfrequencies 
being different due to the excess phase given above). The transverse amplitude and intensity distribution of a few low-order 
Hermite-Gaussian beams are shown in the following figures. The amplitude distribution of Hermite-Gaussian beams breaks 
the cylindrical symmetry of the Gaussian beam, hence their emergence can not be explained in the frame of scalar wave 
theory. It will be shown in the next chapter that light waves propagate as electric and magnetic waves coupled to each other, 
with the electric and magnetic field vectors being orthogonal to the wavefront. In paraxial waves, this means that the mutually 
orthogonal field vectors lye in the transverse plane. The Hermite-Gaussian waves are therefore also referred to as transverse 
electromagnetic (TEM) waves.      
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